2023

MATHEMATICS — HONOURS

Paper: DSE-A-1.1, DSE-A-1.2 and DSE-A-1.3

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations have usual meanings.

Paper: DSE-A-1.1 MURALIDHAR GIRLS' COLLEGE

(Advanced Algebra) LIBRARY

Full Marks: 65

Group - A

(Marks : 20)

1.	Answer all questions. In each question one mark is reserved for selecting the correct	option and one
	mark is reserved for justification:	(1+1)×10

- (a) Let G be a group of order 231. Then the number of Sylow 7-subgroups of G is
 - (i) 2

(ii) 1

(iii) 7

- (iv) 3.
- (b) Let G be a non-commutative group of order p^3 where p is a prime. Then number of elements in the centre Z(G) of G is
 - (i) p^3

(ii) p^2

(iii) p

- (iv) 1.
- (c) In an integral domain
 - (i) every prime element is irreducible
 - (ii) a prime element may not be irreducible
 - (iii) every prime element is reducible
 - (iv) every element is irreducible.
- (d) The ring $(Z, +, \cdot)$ is
 - (i) an integral domain and a regular ring
 - (ii) an integral domain but not a regular ring
 - (iii) a regular ring but not a field
 - (iv) a regular ring but not an integral domain.

Please Turn Over

	AIG.
5th Sm.)-Mathematics-H/DSE-A-1.1, DSE-A-1.2 & DSE-A-1.3/CBCS (2)	
(e) The conjugacy class of (123) in S_3 is	
(i) {(123), (12)} (ii) {(123), (13)}	NO
(iii) {(123), (132)} (iv) {(123), (12), (132)}.	M
(f) Every commutative group of order 36 contains an element	nt of order
(i) 2 (ii) 3	
(iii) 4 (iv) 6.	N
(g) Which of the following group is not simple?	37,
(i) Group of order 20 (ii) Group of order 21	
(iii) Group of order 32 (iv) Group of order 12.	
(h) If K is a field, then $K[x]$ is	20
(i) Integral Domain	MURALIDHAR GIRLS' COLLEGE
(ii) Euclidean Domain	LIBRARY
(iii) Principal Ideal Domain (PID)	
(iv) Not PID.	
(i) Which one of the following statements is true for a group	
(i) G is a simple group (ii) G has a non-trivial centre	е .
(iii) G is commutative (iv) G is cyclic.	
(j) Which is true for the ring $(\mathbb{Z}_{12}, +, \cdot)$?	
(i) 3 is a prime element	
(ii) $\bar{3}$ is an irreducible element	NO
(iii) 5 is a prime element	M
(iv) $\overline{5}$ is an irreducible element.	
Group - B	A
(Marks: 15)	3
2. Answer any three questions:	
(a) Show that A_5 is a simple group.	
(b) State and prove Sylow's First theorem.	1+
(c) Let G be a group of order p^n , p a prime, and $n \in \mathbb{Z}$, $n \ge 1$. Prop ⁿ⁻¹ is normal in G .	ove that any subgroup of G of orde

Z(5th Sm.)-Mathematics-H/DSE-A-1.1, DSE-A-1.2 & DSE-A-1.3/CBCS

(d) Let G be a group and S be a G-set. If S is finite, then prove that

$$|S| = \sum_{a \in A} [G: G_a],$$

where A is the subset containing exactly one element from each orbit [a].

5

(e) Let G be a group of order 99. Prove that G has a unique normal subgroup H of order 11. Also show that $H \subset Z(G)$.

Group - C

(Marks: 30)

MURALIDHAR GIRLS' COLLEGE LIBRARY

- 3. Answer any six questions
 - (a) For any field F, prove that the polynomial ring F[x] is a principal ideal domain. Is Z[x] a principal ideal domain? Justify your answer.
 - (b) In a principal ideal domain D, prove that a non-null ideal $\langle p \rangle$ is maximal if and only if p is an irreducible element in D.
 - (c) Prove that Z[i] is an Euclidean domain.

5

- (d) (i) Prove that the centre of a regular ring is regular.
 - (ii) If an integral domain D is regular, then prove that D is a field.

3+2

- (e) Let R be a unique factorizable domain. Suppose $f(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_0$ is a monic polynomial in R[x] and $p \in R$ is a prime such that $p|a_{n-1}, p|a_{n-2},..., p|a_0$ but $p^2 \not\mid a_0$. Prove that f(x) is irreducible in R[x].
 - (f) Justify the following statement by citing an example:

'There exists an integral domain where greatest common divisor of two elements may not exist'.

5

- (g) (i) Let R be an integral domain and p be a prime element of R. Then prove that p is irreducible.
 - (ii) Prove that the converse is not true.

3+2

- (h) Prove that a Factorisation Domain (FD) D is a Unique Factorisation Domain (UFD) iff every irreducible element of D is prime.
- (i) Show that $gcd(2,1+i\sqrt{5})=1$ in the integral domain $Z[i\sqrt{5}]$.

5

(j) Define regular ring. Let R be a regular ring with more than one element. Suppose for all $x \in R$, there exists unique $y \in R$ such that x = xyx. Show that R is a ring with unity having no divisor of zero.

Paper: DSE-A-1.2

(Bio-Mathematics)

Full Marks: 65

The figures in the margin indicate full marks.

NURPLIDHAR GIPLS COLLECT

Group - A

(Marks: 20)

- Answer the following multiple choice questions with only one correct option. Choose the correct option with proper justification. (1+1)×10
 - (a) In the following model:

$$\frac{1}{N}\frac{dN}{dt} = r \left[1 - \left(\frac{N}{K} \right)^{\theta} \right]; r, K, \theta \text{ being positive parameters,}$$

the steady state $N^* = 0$ is

- (i) unstable
- (ii) stable but not asymptotically stable
- (iii) asymptotically stable
- (iv) none of these.
- (b) In Gompertz growth model $\frac{dP}{dt} = CP \ln(K/P)$, the population (P) grows fastest when P is equal to
 - (i) 0

(ii) K

(iii) e/K

(iv) K/e

MURALIDHAR EIRES COLLEGE LIBRARY

C, K being positive parameters.

(c) In the following harvesting model:

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - qEN,$$

where the symbols have their usual meanings, the non-trivial steady state exists if

(i) $\frac{qE}{r} = 1$

(ii) $\frac{qE}{r} > 1$

- (iii) $\frac{qE}{r} < 1$
- (iv) $\frac{q}{Er} < 1$.
- (d) The system $\frac{dx}{dt} = \mu x + x^2$, where $\mu \in \mathbb{R}$ is a parameter, has a
 - (i) pitchfork bifurcation
- (ii) saddle node bifurcation
- (iii) transcritical bifurcation (iv) none of these.

(e) If α , β , γ , δ are positive parameters, the nullclines of the two-dimensional system

$$\frac{dx}{dt} = x(\alpha - \beta y),$$

$$\frac{dy}{dt} = y(-\gamma + \delta x),$$

intersect at

(i)
$$(0,0)$$
, $\left(\frac{\beta}{\alpha},\frac{\gamma}{\delta}\right)$

(ii)
$$(0,0), \left(\frac{\alpha}{\beta}, \frac{\delta}{\gamma}\right)$$

(iii)
$$(0,0), \left(\frac{\alpha}{\beta}, \frac{\gamma}{\delta}\right)$$

(iv)
$$(0,0), \left(\frac{\beta}{\alpha},\frac{\delta}{\gamma}\right).$$

(f) The steady state (0, 0) of the following system

MURALIDHAR GIRLS' COLLEGE LIBRARY

$$\frac{dx}{dt} = 3x + 2y,$$
$$\frac{dy}{dt} = 4x + y,$$

is

- (i) a centre
- (ii) a saddle point
- (iii) a stable spiral
- (iv) an unstable spiral.
- (g) The steady state (0,0) of the system

$$\frac{dx}{dt} = y,$$

$$\frac{dy}{dt} = (\alpha - 1)x - \alpha y,$$

where α is a positive parameter and $\alpha \neq 1$, is asymptotically stable if

- (i) $0 < \alpha < 1$
- (ii) $\alpha > 1$
- (iii) $2 < \alpha < 3$
- (iv) none of these.
- (h) For the Kermack-McKendrick SIR model, S+I+R is equal to
 - (i) 2S

(ii) 3I

(iii) 4R

- (iv) constant.
- (i) The non-zero steady state of the logistic difference equation $x_{n+1} = rx_n(1-x_n)$, $0 \le r \le 4$ is asymptotically stable if
 - (i) 0 < r < 1
- (ii) 1 < r < 3
- (iii) $0 \le r < 3$
- (iv) $3 \le r < 4$.

Please Turn Over

- (j) The difference equation $x_{n+1} = \frac{\alpha x_n}{1+x_n}$ ($\alpha \in \mathbb{R}$ being a parameter), has two distinct non-negative steady states if
 - (i) $\alpha > 0$

(ii) $\alpha > -1$

(iii) $\alpha < 1$

(iv) $\alpha > 1$.

MURALIDHAR GIRLS GOLLEGE

Group - B

Unit - I

(Marks: 15)

Answer any one question.

- 2. (a) What is meant by Allee effect? Consider the growth model $\frac{dN}{dt} = rN\left(\frac{N}{A} 1\right)\left(1 \frac{N}{K}\right)$, where r, A, K are positive parameters and A < K. Determine the steady states and discuss their stability.
 - (b) Discuss the stability of the steady states of the following harvesting model:

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - h, \text{ for the cases } h < = > \frac{rK}{4},$$

where r(>0) is the growth rate, h(>0) is the constant rate harvesting and K(>0) is the carrying capacity.

(c) Suppose that a population follows Malthus growth model. If it has 24×10⁵ members after 5 years and 15×10⁵ members after 15 years, what was the initial population size?

(2+2+3)+5+3

3. (a) What is meant by bifurcation? Discuss the saddle node bifurcation for the system

$$\frac{dx}{dt} = \mu + x^2, \ \mu \in \mathbb{R},$$

where μ is a parameter.

(b) Show by using the transformation N = ax, $T = \frac{a}{m}t$ the following spruce-budworm model:

$$\frac{dN}{dT} = rN\left(1 - \frac{N}{K}\right) - \frac{mN^2}{a^2 + N^2}$$
 (where the symbols have their usual meanings),

can be put in the following dimensionless form

$$\frac{dx}{dt} = px \left(1 - \frac{x}{q} \right) - \frac{x^2}{1 + x^2},$$

where the constants p and q are to be determined by you. Also discuss the stability of the trivial steady state.

(c) For the logistic model $\frac{dx}{dt} = rx\left(1 - \frac{x}{K}\right)$ with $x(0) < \frac{K}{2}$ (where symbols have their usual meanings), show that x = K is an asymptotically stable steady state. Also show that the solution curve has a point of inflexion at $x = \frac{K}{2}$. Hence draw the rough sketch of the solution curve. $(1+3) + \{2+(1+1)+2\} + (2+2+1)$

Unit - II

(Marks: 20)

Answer any two questions.

4. (a) Linearise the classical Lotka-Volterra model

MURALIDHAR GIRLS' COLLEGE LIBRARY

$$\frac{dx}{dt} = \alpha x - \beta xy,$$

$$\frac{dy}{dt} = -\gamma y + \delta xy,$$

MORALIONER SINCE COLL

about the positive steady state, where α , β , γ , δ are positive parameters. Hence show that both prey and predator have periodic solutions with same period.

(b) Investigate the stability of the non-trivial steady states of the following competition model:

$$\frac{dx}{dt} = x(16 - 2x - y),$$

$$\frac{dy}{dt} = y(12 - x - y).$$
(2+2+1+1)+4

5. Discuss the stability of the steady states of the following predator-prey system:

10

$$\frac{dx}{dt} = x \left(1 - \frac{x}{30} \right) - \frac{xy}{x+10},$$

$$\frac{dy}{dt} = -\frac{3y}{5} + \frac{xy}{x+10}.$$

6. Consider the following model of bacterial growth in a chemostat:

$$\frac{dN}{dt} = \left(\frac{k_1 C}{k_2 + C}\right) N - \frac{FN}{V},$$

$$\frac{dC}{dt} = -\alpha \left(\frac{k_1 C}{k_2 + C}\right) N - \frac{FC}{V} + \frac{FC_0}{V},$$

where the symbols have their usual meanings.

Please Turn Over

(a) Show that the equations can be reduced to the following dimensionless form by the substitution

$$N = \frac{Fk_2}{\alpha V k_1} u, \quad C = k_2 v, \quad t = \frac{V}{F} \tau:$$

$$\frac{du}{d\tau} = \alpha_1 \left(\frac{v}{1+v}\right) u - u,$$

$$\frac{dv}{d\tau} = -\left(\frac{v}{1+v}\right) u - v + \alpha_2,$$

where α_1 and α_2 are the parameters to be determined by you.

- (b) Find the steady states of the dimensionless system. Find the conditions on α_1 and α_2 so that the steady states become biologically meaningful.
- (c) Determine the stability of the biologically meaningful steady states.

2+3+5

7. (a) Show that the following system:

$$\frac{dx}{dt} = -y + x \left(1 - x^2 - y^2\right),$$

$$\frac{dy}{dt} = x + y \left(1 - x^2 - y^2\right),$$
MURALIDHAR GIRLS' COLLEGE
LIBRARY

has a stable limit cycle.

(b) State the basic assumptions of the Kermack-McKendrick SIR model. Draw the flowchart and write the model equations. Find the basic reproduction number.

5+(2+2+1)

Answer any one question.

- 8. (a) Suppose x^* is a steady state of the system $x_{n+1} = f(x_n)$, where f(x) is a continuously differentiable function and $|f'(x^*)| \neq 1$. Prove that x^* is asymptotically stable if $|f'(x^*)| < 1$ and unstable if $|f'(x^*)| > 1$.
 - (b) Discuss the stability of each steady state of the system $x_{n+1} = \frac{3x_n}{2+x_n}$ using cobweb diagram with initial value x_0 . [Show at least three iterations in each case.] 5+(3+2)

9. (a) Consider the discrete-time predator-prey system:

$$x_{n+1} = ax_n (1 - x_n) - bx_n y_n,$$

$$y_{n+1} = -cy_n + dx_n y_n,$$

where a, b, c, d are positive parameters. Find the steady states of the system and discuss their stability.

(b) Show that the following difference equation:

MURALIDHAR GIRLS' COLLEGE LIBRARY

$$x_{n+1} = \frac{rx_n^2}{x_n^2 + A}$$
, (r, A being positive parameters),

where r, A are positive parameters, has three distinct steady states if $r > 2\sqrt{A}$ and discuss their stability. (3+3)+4

Coliphan

Paper: DSE-A-1.3

(Industrial Mathematics)

Full Marks: 65

The figures in the margin indicate full marks.

1.	Choose the correct answer with	proper	r justifica	ation/explanation	for 6	each	of the following	multiple
	choice question. (one mark fo	reach	correct a	answer and one	mark	for	justification.)	2×10

(a) If the 2×2 matrix X satisfies the equation $X \begin{pmatrix} 4 & 7 \\ 5 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$, then $X = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$

(i)
$$\begin{pmatrix} -6 & 4 \\ 13 & -10 \end{pmatrix}$$

(ii)
$$\begin{pmatrix} -6 & 5 \\ 13 & -10 \end{pmatrix}$$

MURALIDHAR GIRLS COLLEGE LIBRARY

(iii)
$$\begin{pmatrix} -6 & 4 \\ 12 & -10 \end{pmatrix}$$

(iv)
$$\begin{pmatrix} -6 & 4 \\ 13 & -1 \end{pmatrix}$$
.

- (b) The attenuation coefficient of an X-ray beam measures
 - (i) proportion of the photons absorbed by each millimeter of a substance when an X-ray passes through it.
 - (ii) wavelength of the X-ray
 - (iii) proportion of the photons which are not absorbed by a substance when an X-ray passes through it.
 - (iv) None of the above.
- (c) If $l_{t,\theta}$ be the line through the point $(t\cos\theta, t\sin\theta)$ and perpendicular to the unit vector $\hat{n} = (\cos\theta, \sin\theta)$, then $x + y = \sqrt{2}$ is same as

(i)
$$l_{1,\frac{\pi}{2}}$$

(ii)
$$l_{1,\frac{\pi}{4}}$$

(iii)
$$l_{0,\frac{\pi}{2}}$$

(iv)
$$l_{\sqrt{2},\frac{\pi}{4}}$$

- (d) Suppose f_1 is the attenuation-coefficient function corresponding to a disc of radius $\frac{1}{2}$ centred at the origin and with constant density 1. Then, for every line $l_{0,\theta}$ through the origin, the Radon transform $\mathcal{R}f_1(0,\theta) =$
 - (i) 0

(ii) 1

(iii) 2

(iv) $\frac{1}{2}$.

- (e) Algebraic reconstruction techniques (ARTs) are techniques for reconstructing images
 - (i) that have no direct connection to the Radon inversion formula
 - (ii) that are same as the Radon inversion formula
 - (iii) that are connected to but not same as the Radon inversion formula
 - (iv) None of the above.
- (f) If a signal x(t) has a Fourier transform $X(\omega)$ and x(t) is an even real function of t, then $X(\omega)$ is
 - (i) a real and even function
 - (ii) a real and odd function
 - (iii) an imaginary and even function
 - (iv) an imaginary and odd function.
- MURALIDHAR GIRLS' COLLEGE LIBRARY

- (g) $\sqrt[n]{i} + \sqrt[n]{-i}$ is equal to
 - (i) $2\cos\frac{\pi}{2n}$

(ii) $2\sin\frac{\pi}{2n}$

(iii) 0

- (iv) $2i\cos\frac{\pi}{2n}$
- (h) The Fourier cosine transform of e^{-bx} is
 - (i) $\sqrt{\frac{2}{\pi}} \frac{b^2}{p^2 + b^2}$
- (ii) $\sqrt{\frac{2}{\pi}} \frac{p^2}{p^2 + b^2}$
- (iii) $\sqrt{\frac{2}{\pi}} \frac{b}{p^2 + b^2}$
- (iv) $\sqrt{\frac{2}{\pi}} \frac{p}{p^2 + b^2}$
- (i) Back projection of the Radon transform of a function
 - (i) always reproduces the original function in any domain
 - (ii) does not necessarily reproduce the original function
 - (iii) only reproduces the original function in the domain of unit circle
 - (iv) none of the above is true.
- (j) Let $f(x) = e^{-Ax^2}$, for some positive constant A > 0. Then the Fourier transform of f(x) is
 - (i) $\sqrt{\frac{\pi}{2A}}e^{-\frac{\omega^2}{2A}}$
- (ii) $\sqrt{\frac{\pi}{A}}e^{-\frac{\omega^2}{A}}$

(iii) $\sqrt{\frac{\pi}{A}}e^{-\frac{\omega^2}{2A}}$

(iv) $\sqrt{\frac{\pi}{4}}e^{\frac{\omega^2}{4A}}$

Z(5th Sm.)-Mathematics-H/DSE-A-1.1, DSE-A-1.2 and DSE-A-1.3/CBCS

(12)

Unit - I

- 2. Answer any two questions:
 - (a) Explain Inverse problem with a mathematical example. Why is it necessary in the science of imaging?
 - (b) Define CT scan and explain it by an example.
 - (c) Define the well-posedness of a mathematical problem. Give an example of an ill-posed problem.
 - (d) Find the complementary function and general solution of the differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x} + x^2.$$
LIBRARY

1+4

3+2

Unit - II

- 3. Answer any two questions:
 - (a) Explain direct problem and indirect problem with suitable example.
 - (b) Find the inverse of $f(x) = (x-3)^3 1$, $x \in \mathbb{R}$. Also find $f^{-1}(0)$ and $f^{-1}(7)$.
 - (c) Suppose the eigenvalues of $A = \begin{pmatrix} a & -b \\ -b & c+d \end{pmatrix}$ are 2 and 7 and the eigenvalues of $B = \begin{pmatrix} a & -b \\ -b & c \end{pmatrix}$ are 1 and 5. Find A and B.
 - (d) Given that under the influence of a central force, the radius vector joining the centre of force to the particle, sweeps out equal areas in equal times. Solve the following inverse problem:
 If a particle orbits in a circle and the radius vector sweeps out equal areas in equal times, then the particle is attracted by a central force to the origin.

Unit - III

- 4. Answer any one question:
 - (a) State Beer's law on X-ray beam. Write its differential equation form. Establish the result

$$\int_{x_0}^{x_1} A(x)dx = \ln\left(\frac{I_0}{I_1}\right),$$

where A(x) is the attenuation coefficient function and I(x) is the intensity of the X-ray beam.

(b) An X-ray beam propagating in a medium is defined by $A(x) = \frac{1}{\theta} - \frac{k-1}{x}$, where θ , k > 0 are real constants. Prove that the intensity of the X-ray beam is a gamma distribution and the normalization constant is equal to $\frac{1}{\theta^k \Gamma(k)}$.

Unit - IV

- 5. Answer any one question:
 - (a) Find the Radon transform on a line $\mathcal{L}_{t,\theta}$ of the function f(x,y) which is defined in an ellipse:

$$f(x,y) = \begin{cases} 1 - \sqrt{x^2 + 0.5y^2}, & \text{if, } x^2 + 0.5y^2 \le 1 \\ 0, & \text{if, } x^2 + 0.5y^2 > 1 \end{cases}$$

(b) Write a short note on Shepp-Logan Mathematical phantom.

MURALIDHAR GIRLS' COLLEGE

5

NGC LIX

Unit - V

- 6. Answer any one question:
 - (a) (i) Let $h = h(t, \theta)$ be a function whose inputs are polar coordinates. Define the Back Projection function Bh(x, y) of h at the point (x, y).
 - (ii) Prove that the Back Projection function $\mathcal{B}h(x, y)$ is a linear transformation. 2+3
 - (b) If $h(t, \theta) = t^2 \cos^2 \theta$, then find the back projection of $h(t, \theta)$ at the point (1, 2).

Unit - VI

- 7. Answer any two questions:
 - (a) (i) What is algebraic reconstruction technique or ART?

(ii) Find the Fourier transform of
$$f(x) = \begin{cases} 1, & |x| \le a \\ 0, & |x| > a \end{cases}$$
.

- (b) Show that the inverse Fourier Transform of an even function is a real-valued function and the inverse Fourier Transform of an odd function is a purely imaginary function.
- (c) Prove that for suitable functions f and g

$$\mathcal{F}(f \cdot g) = \frac{1}{2\pi} (\mathcal{F}f) * (\mathcal{F}g)$$
, where * denotes convolution.

(d) For the system of two lines $x_1 - x_2 = 0$ and $x_1 + x_2 = 5$ and the starting point $x^0 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, apply Kaczmarz's method to compute $x^{0,1}$ and $x^{0,2}$.