2023

MATHEMATICS — HONOURS

Paper: CC-12

(Unit - I + II)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Z, R respectively denote the set of all

integers and set of all real numbers.

- 1. Choose the correct answer with proper justification (1 mark for right answer and 1 mark for justification): 2×10
 - (a) Let G be a cyclic group of order 36. Then
 - (i) $G \cong \mathbb{Z}_2 \times \mathbb{Z}_{18}$
- (ii) $G \cong \mathbb{Z}_3 \times \mathbb{Z}_{12}$
- (iii) $G \cong \mathbb{Z}_{\Delta} \times \mathbb{Z}_{Q}$
- (iv) $G \cong \mathbb{Z}_6 \times \mathbb{Z}_6$.
- (b) Order of the element (a,(123)) in $K_4 \times S_3$ is
 - (i) 2

- (ii) 3
- 3031100 Gijb, 45 AROHARIN
- (iv) 6.
- (c) It is true that $Aut(\mathbb{Z}) \cong$
 - (i) **Z**

(ii) **Z**

(iii) S_3

- (iv) K_{Λ}
- (d) If $f: G \to G$ such that $f(a) = a^n$ is an automorphism, then
 - (i) $a^{n-1} \in Z(G) \forall a \in G$
 - (ii) $a^{n-1} \notin Z(G)$
 - (iii) $a^{n-1} \in Z(G)$ if G is abelian
 - (iv) $a^{n-1} \in Z(G)$ if G is cyclic.
- (e) If T be a linear operator on \mathbb{R}^3 whose adjoint operator T^* is defined by $T^*(x, y, z) = (2x + z, 0, 0)$, then T(x, y, z) =
 - (i) (2x, x, 0)
- (ii) (x, 0, 2x)
- (iii) (2x, 0, x)
- (iv) (0, x, 2x)

MURALIDHAR GIRLS' COLLEGE LIBRARY (f) The degree of the minimal polynomial of

	(i) 2	(ii)	3		
	(iii) 4	(iv)			
(g)	Let ϕ be the	linear functional on	\mathbb{R}^2	such that $\phi(2, 1) = 15$	and $\phi(1, -2) = -10$. Then $\phi(-2, 7) =$
	(i) 21	(ii)			10
	(iii) 41	(iv)			Ø.,
(h)	If $V(F)$ is an null vector in	inner product space I V, then which of th	and e fo	$\{\theta\}^{\perp}$ is the orthogonal illowing is true?	complement of $\{\theta\}$, where θ is the
	(i) $\{\theta\}^{\perp} = 0$	φ (ii)	{θ}	$\mathbf{r}_{\perp} = \{\mathbf{\theta}\}$	~C *
	(iii) $\{\theta\}^{\perp} = 1$, ,		} [⊥] ⊊ <i>V</i> .	NO.
(i)	The signatur	e of the quadratic for	orm	$5x^2 + y^2 + 10z^2 - 4yz -$	10 <i>zx</i> is
	(i) 0	(ii)	1	•	¥
	(iii) 2	(iv)	3.		
(j)	If $x = (a_1, a_2)$), $y = (b_1, b_2)$ be any	two	vectors in $V_2(F)$, then	the length of the vector (3, 4) with
	respect to th	e inner product (x, y))=	$a_1\overline{b}_1 + (a_1 + a_2)(\overline{b}_1 + \overline{b}_2)$	is
	(i) 5	(ii)			
	(iii) √ <u>58</u>	(iv)	No	ne of these.	MURALIDHAR GIRLS' COLLEGE
1	001				TIPOATO

2. Answer any four questions:

- (a) Let H and K be two finite cyclic groups of order m and n respectively. Prove that $H \times K$ is a cyclic group if and only if gcd(m, n) = 1.
- (b) Find the number of elements of order 5 in $\mathbb{Z}_{25} \times \mathbb{Z}_5$.

5

UCC / ilokar

LIBRARY

(i) Give an example of a group of order 8 which is not abelian. Justify your answer.

Unit - I (Group Theory)

(ii) Show that every abelian group of order 35 is cyclic.

- (d) Find all abelian groups of order 1200.
- (i) If G be a finite cyclic group of order n, then prove that $Aut(G) \cong U_n$, where U_n is the group (e) of integers under multiplication modulo n.
 - (ii) Let $f: G \rightarrow G$ be an automorphism of G.

Prove that
$$o(f(a)) = o(a) \forall a \in G$$
.

3+2

- (f) If a group G is an internal direct product of its two subgroups H and K, then prove that
 - (i) $H \cap K = \{e\}$, e is the identity element in G.
 - (ii) G is isomorphic to the external direct product of H and K.

2+3

- (g) (i) Prove that a non-cyclic group of order 4 is an internal direct product of two cyclic groups each of order two.
 - (ii) Prove that if Aut(G) is cyclic, then G is abelian.

3+2

Unit - II

(Linear Algebra)

- 3. Answer any five questions:
 - (a) State and prove Cauchy-Schwartz's inequality in an Euclidean space.

1+4

5

5

- (b) Using Gram-Schimdt orthonormalisation process, find an orthonormal basis corresponding to the basis {(1,0,1), (1,1,0), (1,3,4)} in ℝ³(ℝ) using standard inner product. 5
- (c) Let $V = \mathbb{R}^3$ and $f_1, f_2, f_3 \in V^*$, V^* is the dual space of V such that $f(x, y, z) = x 2y \cdot f(x, y, z) = x + y + z \text{ and } f(y, y, z) = y 2z$

 $f_1(x, y, z) = x - 2y$, $f_2(x, y, z) = x + y + z$ and $f_3(x, y, z) = y - 3z$.

Prove that $\{f_1, f_2, f_3\}$ is a basis of V^* and find a basis of V for which $\{f_1, f_2, f_3\}$ is the dual basis of V.

- (d) Define eigenspace of a linear operator T on the vector space V. Find the eigen space of $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x, 0).
- (e) Prove that the dual space of an n dimensional vector space is n dimensional.

MURALIDHAR GIRLS' COLLEGE

- (f) Diagonalise the matrix $\begin{pmatrix} 6 & 4 & -2 \\ 4 & 12 & -4 \\ -2 & -4 & 13 \end{pmatrix}$.
- (g) Reduce the quadratic form $2x^2 + 5y^2 + 10z^2 + 4xy + 6xz + 12yz$ into its canonical form.
- (h) Find a Jordan canonical form of $\begin{pmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{pmatrix}$ over the field of real numbers. 5