2023

MATHEMATICS — HONOURS

Paper: CC-8

(Riemann Integration and Series of Functions)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

 \mathbb{N} , \mathbb{R} , \mathbb{Q} , \mathbb{Z} denote the sets of natural, real, rational numbers and integers respectively.

- 1. Answer the following multiple choice questions having only one correct option. Choose the correct option and justify your choice. (1+1)×10
 - (a) Let P, Q and R be three partitions of [0, 1], where $P = \left(0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right)$, $Q = \left(0, \frac{1}{8}, \frac{1}{4}, \frac{7}{2}, \frac{7}{8}, 1\right)$ and

$$R = \left(0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1\right).$$

Then,

(i) Q is a refinement of R.

MURALIDHAR GIRLS' COLLEGE LIBRARY

- (ii) R is a refinement of P and Q both.
- (iii) R is a refinement of P and not a refinement of Q.
- (iv) R is not a refinement of P and a refinement of Q.

(b)
$$f(x) = \begin{cases} c & \text{if } 0 \le x \le c \\ 2c & \text{if } c < x \le 1 \end{cases}$$

If
$$\int_{0}^{1} f(x)dx = \frac{7}{16}$$
, the value of 'c' is

(i) $\frac{1}{2}$

(ii) $\frac{1}{3}$

(iii) $\frac{1}{4}$

(iv) $\frac{1}{5}$

(c) The number of points of discontinuities of the function $\phi(x) = \int_0^x \left[\sqrt{t} \right] dt$, $0 \le x \le 2023$, ([r] denotes greatest integer $\le r$) is

(i) 1

(ii) 2023

(iii) 0

(iv) 2021.

(d) Let $f: [0, 1] \to \mathbb{R}$ be defined by

$$f(x) = 1, x \in [0, 1] \cap \mathbb{Q}$$

= -1, $x \in [0, 1] - \mathbb{Q}$

Then,

- (i) f is \mathbb{R} -integrable.
- (ii) |f| is \mathbb{R} -integrable and f is also \mathbb{R} -integrable.
- (iii) |f| is not \mathbb{R} -integrable and f is \mathbb{R} -integrable.
- (iv) |f| is \mathbb{R} -integrable but f is not \mathbb{R} -integrable.

(e) If
$$I_1 = \int_0^1 x^{\log(\frac{1}{100})} dx$$
 and $I_2 = \int_1^\infty x^{\log(\frac{1}{100})} dx$, then

- (i) both I_1 and I_2 exist finitely
- (ii) only I_1 exists finitely
- (iii) only I_2 exists finitely
- (iv) neither I_1 nor I_2 exist finitely.

NCC Librar

(f)
$$\int_{0}^{1} x^{m-1} \left(\log \frac{1}{x} \right)^{n-1} dx \quad (m > 0, n > 0) \text{ is equal to}$$

(i) $\frac{\Gamma(n)}{n^m}$

(ii) $\frac{\Gamma(m)}{m^n}$

(iii) $\frac{\Gamma(n)}{m^n}$

- (iv) $\frac{\Gamma(m)}{m^n}$
- (g) The sequence $\left\{\frac{x^n}{n}\right\}_n$ of functions
 - (i) converges uniformly to 0 in [0, 1]
 - (ii) converges uniformly to 1 in [0, 1]
 - (iii) diverges in [-1, 0]
 - (iv) converges uniformly to 1 in [-1, 1].

- (h) The series $1 + \frac{1}{1+x^2} + \frac{1}{\left(1+x^2\right)^2} + \dots$ of functions converges
 - (i) to $1 + \frac{1}{1.2}$ everywhere in [-1, 1] (ii) to $1 \frac{1}{1.2}$ in [-1, 1]
 - (iii) to $1 \frac{1}{r^2}$ in (-1, 1)
- (iv) to $1 + \frac{1}{n^2}$ only in $\mathbb{R} \setminus \{0\}$.
- (i) The radius of convergence of the power series

(ii) (-2-e, -2+e)

(iii) (-e, e)

- (iv) (-e-2, -e+2)
- (j) If f(x) is an odd function defined on $[-\pi, \pi]$, then the Fourier series of f(x) is of the form
 - (i) $\frac{1}{2}a_0 + \sum_{n=0}^{\infty} a_n \cos nx$ (ii) $\frac{1}{2}a_0 + \sum_{n=0}^{\infty} b_n \sin nx$

(iii) $\sum_{n=1}^{\infty} a_n \cos nx$ $[a_0 \neq 0]$

(iv) $\sum_{n=1}^{\infty} b_n \sin nx$.

MURALIDHAR GIRLS' COLLEGE

- 2. Answer any three questions:
 - (i) Define norm of a partition of [a, b].
 - (ii) Let $f: [a, b] \to \mathbb{R}$ be bounded on [a, b] and P, Q be any two partitions of [a, b]. Then prove that $L(P,f) \le U(Q,f)$ and $L(Q,f) \le U(P,f)$.
 - (b) Let $f:[a,b] \to \mathbb{R}$, $\phi:[a,b] \to \mathbb{R}$ be both bounded on [a,b] such that $f(x) = \phi(x)$ except for a finite number of points in [a, b]. If f be integrable on [a, b] show that ϕ is also integrable on [a, b].

Also prove that $\int \phi = \int f$.

2+3

- (i) If $f: [a, b] \to \mathbb{R}$ is continuous and f(x) > 0, $\forall x \in [a, b]$ and let $F(x) = \int f(t)dt$, $x \in [a, b]$ (c) show that F is strictly increasing on [a, b].
 - (ii) Let $f(x) = x |x|, -1 \le x \le 1$. Find a point $c \in [-1, 1]$, such that $\int f(x) dx = 2f(c)$ 3+2

Please Turn Over

(d) (i) Let $f: [a, b] \to \mathbb{R}$ be integrable on [a, b]. If M is the supremum and m is the infimum of f on [a, b] then, prove that

$$m(b-a) \le \int_{a}^{b} f \le M(b-a)$$
.

- (ii) Evaluate $\int_{0}^{1} \left(2x\sin\frac{1}{x}-\cos\frac{1}{x}\right)dx$ by applying fundamental theorem of Integral Calculus. 3+2
- (e) Give an example of a real valued function on [-1, 1] which has a primitive but is not Riemann integrable on [-1, 1].

Give an example of a real valued function on [-1, 1] which is Riemann integrable but does not have a primitive.

3. Answer any two questions:

(a) Examine for convergence of
$$\int_{0}^{\infty} \frac{x \tan^{-1} x}{(1+x^4)^{\frac{1}{3}}} dx$$
. MURALIDHAR GIRLS' COLLEGE LIBRARY

(b) Prove that
$$B(m,n) = \int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$
 $(m,n>0)$.

(ii) Show that
$$\int_{-1}^{1} (1+x)^{p-1} (1-x)^{q-1} dx = 2^{p+q-1} B(p,q).$$
 3+2

- (c) Show that the improper integral $\int_{0}^{1} \frac{1}{x} \sin \frac{1}{x} dx$ is convergent.
- (d) (i) State Dirichlet's test for improper integral $\int_{a}^{\infty} f(x)dx$ (a > 0).
 - (ii) Show that the improper integral $\int_{1}^{\infty} \frac{x}{1+x^2} \sin x \, dx$ is convergent. 2+3

- 4. Answer any four questions:
 - (a) Prove that the uniform limit function of a sequence of Riemann integrable functions is Riemann integrable on the domain of definition.
 - (b) Prove that the sequence $\{f_n\}_n$, where $f_n(x) = n^2 x (1 x^2)^n$, $0 \le x \le 1$, is not uniformly convergent on [0, 1] by using $\lim_{n \to \infty} \int_0^1 f_n(x) dx \ne \int_0^1 f(x) dx$, where 'f' is the limit function of $\{f_n\}_n$.
 - (c) Let [a, b] be a closed and bounded interval and for each $n \in \mathbb{N}$, let f_n be differentiable on [a, b]. If each f'_n be continuous on [a, b] and the series of functions $f'_1 + f'_2 + f'_3 + \dots$ converges uniformly on [a, b] to a function g and the series $f_1 + f_2 + f_3 + \dots$ converges to S on [a, b] then show that $S'(x) = g(x) \ \forall x \in [a, b]$.
 - (d) (i) Examine whether

$$\sum_{n=p}^{\infty} \left[4^{-n} \sin(3^n \pi x) + \frac{\cos(n^2 x)}{p^n} \right]$$
 MURALIDHAR GIRLS' COLLEGE LIBRARY

is uniformly convergent on \mathbb{R} , where p is a + ve integer ≥ 2 .

- (ii) Use Weierstrass's M-test to prove that $\sum_{n=1}^{\infty} \frac{2^n x^{2n-1}}{1+x^{2n}}$ converges uniformly for $|x| \le \frac{1}{2}$.
- (e) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R(>0). If the series converges at the end point R of the interval of convergence (-R, R), then show that the series is uniformly convergent on the closed interval [0, R].
- (f) Assuming the power series expansion for $\frac{1}{1+x^2}$ as $\frac{1}{1+x^2} = 1-x^2+x^4-x^6+...$, derive the power series of $\tan^{-1}x$ together with its interval of convergence. From this, find the sum of the infinite series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$.
- (g) Find the Fourier series for a periodic function $f: \mathbb{R} \to \mathbb{R}$ of period 2π defined by f(x) = |x|, $-\pi \le x \le \pi$. Also find the sum of the series at $x = 5\pi$.