2023

MATHEMATICS — HONOURS

Paper: CC-6
Full Marks: 65

MURALIDHAR GIRLS' COLLEGE LIBRARY

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

 \mathbb{Z} , \mathbb{R} and \mathbb{C} denote the set of integers, set of real numbers and set of complex numbers, respectively.

1.

set of complex numbers, respectively.	
justification):	ication (1 mark for correct answer and 1 mark for (1+1)×10
(a) In a ring $(R, +, \bullet)$, $x^2 = x$, $\forall x \in R \neq \{0\}$. The	nen which one of the following is true?
(i) R is commutative and char $R=2$	(ii) R is commutative and char $R \neq 2$
(iii) R is non-commutative and char $R = 2$	(iv) R is non-commutative and char $R \neq 2$.
(b) If $(\mathbb{Z}_n, +, \bullet)$ is an integral domain, then $\phi(n)$ is equal to	
(i) n	(ii) $n-1$
(iii) $n-2$	(iv) 1.
(c) If $f: \mathbb{Z} \to \mathbb{Z}_6$ is defined by $f(n) = [n]$ for all $n \in \mathbb{Z}$, then ker f is equal to	
(i) Z	(ii) 2ZZ
(iii) 3ZZ	(iv) 6Z.
(d) Let $(D, +, \bullet)$ be a division ring with p elements. Then for all $a \in D$,	
(i) $a^p = 0$	(ii) $a^p = a - 1$
(iii) $a^p = a$	(iv) $a^p \neq a^2$.
(e) Find the correct statement from the following:	
(i) A field has no ideals.	(ii) A field has only two ideals.
(iii) A field has only one ideal.	(iv) A field may contain an infinite number of ideals.
(f) Let $a\mathbb{Z}$ and $b\mathbb{Z}$ be two ideals of the ring \mathbb{Z} and $c\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$. Then	
(i) $c = gcd(a, b)$	(ii) $c = a.b$
(iii) $c = a/b$	(iv) $c = lcm(a, b)$.

- (g) Let V be a vector space of all real valued functions over the field \mathbb{R} . Which of the following is not a subspace of V?
 - (i) $W_1 = \{ f \in V : f(0) = f(1) \}$
 - (ii) $W_2 = \{ f \in V : f(2) = 0 \}$
 - (iii) $W_3 = \{ f \in V : f \text{ is a continuous function} \}$
 - (iv) $W_4 = \{ f \in V : f(3) = 1 + f(4) \}.$
- (h) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear mapping such that T(1, 2) = (2, 3) and T(0, 1) = (1, 4). Then T(5, 6) is
 - (i) (6, -1)

(ii) (-6, 1)

(iii) (-1, 6)

- (iv) (1, -6).
- (i) Let A be a 3×3 real matrix with eigenvalues 2, -2, 1. Then
 - (i) $A^2 2A$ is non-singular
- (ii) $A^2 + 2A$ is non-singular

(iii) $A^2 - A$ is non-singular

(iv) $A^2 + A$ is non-singular.

(j) If $A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$, then A^{-1} is

MURALIDHAR THIS COLLEGE

(i) $\frac{1}{6}(A+I)$

(ii) $\frac{1}{6}(A+2I)$

(iii) $\frac{1}{6}(A-I)$

(iv) $\frac{1}{6}(A-2I)$.

Unit - I

- 2. Answer any five questions:
 - (a) (i) Prove that any finite integral domain is a field.
 - (ii) Let R be a ring with unity 1. If $a^2 = a$, $\forall a \in R$, show that 1 2a is a unit.

3+2

- (b) (i) Show that the centre of a ring $(R, +, \cdot)$ is a subring of the ring.
 - (ii) Show that intersection of all subfields of the field of real numbers R is the field of rational numbers.
- (c) (i) Show that every subring of the ring $(\mathbb{Z}_n, +, \bullet)$, where n is a positive integer, is an ideal of \mathbb{Z}_n .
 - (ii) Prove that the field of real number $\mathbb R$ and the field of complex number $\mathbb C$ are not isomorphic.
- (d) (i) Show that the characteristic of a finite ring R divides |R|, where |R| denotes the cardinality of R.
 - (ii) Let R be a ring with unity. Prove that $M_n(R)$, ring of all $n \times n$ matrices has the same characteristic as that of R.

- (e) (i) Let f be an epimorphism of a ring R onto a ring S. Then prove that for every ideal J of S, $f^{-1}(J)$ is an ideal of R containing ker f.
 - (ii) Prove that an ideal of an ideal of a ring R may not be an ideal of R.
- (1) Let R be a commutative ring with identity, $1 \neq 0$. Prove that a proper ideal P of R is a prime ideal of R if and only if R/P is an integral domain.
- (g) (i) Show that the ring 2ZZ is not isomorphic to the ring 5ZZ.
 - (ii) For any integer n(>1), show that $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

2+3

3+2

(h) Let $I = \{a + bi \in \mathbb{Z}[i] : a - b \text{ is divisible by 2}\}$. Show that I is a maximal ideal of $\mathbb{Z}[i]$, the ring of Gaussian integer. Is it a prime ideal? Justify your answer.

हेरात । याच्या काला । वर्षे

Unit - II

MURALIDHAR GIRLS' COLLEGE LIBRARY

- 3. Answer any four questions :
 - (a) (i) Let $S = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a linearly independent set of generators of a vector space V and T be a proper subset of S. Prove or disprove: T is a basis for V.
 - (ii) Let $\{\alpha, \beta, \gamma\}$ be a basis for a real vector space V and c is a non-zero real number. Prove that $\{\alpha, \beta, \gamma\}$ is a basis for V.
 - (b) Show that the set S is a subspace of \mathbb{R}^3 , where $S = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0, y = z\}$. Find a basis for S and hence find dim S.
 - (e) (i) A mapping $T: \mathbb{R}^3 \to \mathbb{R}^4$ is defined by T(x, y, z) = (-x + y + z, x y + z, x + y z, x + y + z) for all $(x, y, z) \in \mathbb{R}^3$. Examine if T is linear.
 - (ii) Let V and W be vector spaces over a field F. If a linear mapping $T:V\to W$ is invertible, then show that $T^{-1}:W\to V$ is also a linear transformation.
 - (d) (i) Let $S = {\alpha, \beta, \gamma}$ and $T = {\alpha, \alpha + \beta, \alpha + \beta + \gamma}$ be two subsets of a real vector space V. Show that L(S) = L(T).
 - (ii) Let V and W be two vector spaces over a field F and $T: V \to W$ be a linear mapping. If ker $T = \{0\}$ and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis of V, prove that $\{T(\alpha_1), T(\alpha_2), ..., T(\alpha_n)\}$ is a basis of Im T.
 - (e) Let \mathbb{R}^3 denote the three dimensional real vector space. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear mapping which is defined as follows:

T(x, y, z) = (x + y, y + z, z + x), for all $(x, y, z) \in \mathbb{R}^3$.

- (i) Determine the dimension of Ker T and Im T.
- (ii) Find the matrix associated with T, with respect to the standard ordered basis of \mathbb{R}^3 . (1+1)+3

(4)

- (f) (i) Prove that two eigenvectors of a square matrix A over a field F, corresponding to two distinct eigenvalues of A are linearly independent.
 - (ii) If λ be an eigenvalue of a real orthogonal matrix A, then show that $\frac{1}{\lambda}$ is also an eigenvalue of A.
- (g) (i) If $\{\alpha, \beta, \gamma\}$ is a linearly independent set of vectors in a real vector space V, verify the linear independence of set of vectors $\{\alpha-\beta, \beta-\gamma, \gamma-\alpha\}$.

(ii) Use Cayley-Hamilton theorem to find A^{100} , where $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. 2+3

2+3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0-3

2-3-1-0