2023

MATHEMATICS — **HONOURS**

Paper: CC-5

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

R denotes the set of real numbers.

Group - A

(Marks : 20)

MURALIDHAR GIRLS' COLLEGE

1. Answer the following multiple choice questions each having only one correct option. Choose the correct option and justify. (1+1)×10

(a)
$$\lim_{x \to 0} \frac{\sin[x]}{x} =$$

(i) 0

(ii) 1

(iii) - 1

(iv) does not exist.

([x] denotes the largest integer not exceeding x)

(b) Let
$$f(x) = \begin{cases} \frac{1}{\sin x}, & x \in (0,1) \\ 5, & x = 0 \\ 10, & x = 1 \end{cases}$$

then f does not have a limit at

(i) 0

(ii) 1

(iii) $\frac{1}{2}$

(iv) $\frac{3}{4}$

(c)
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}}-1}{e^{x}+1}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 has discontinuity at $x = 0$.

MURALIDHAR GIRLS' COLLEGE LIPRARY

The type of discontinuity is

- (i) removable discontinuity
- (ii) Jump discontinuity
- (iii) Oscillatory discontinuity
- (iv) Infinite discontinuity.

(d) Which statement is true for the function
$$f(x) = \begin{cases} 3 + 2x; & -\frac{3}{2} < x \le 0 \\ 3 - 2x; & 0 < x < \frac{3}{2} \end{cases}$$
?

- (i) f(x) is continuous at x = 0 and also differentiable at x = 0
- (ii) f(x) is continuous but not differentiable at x = 0
- (iii) f(x) is differentiable at x = 0
- (iv) f(x) is nowhere differentiable in $\left(-\frac{3}{2}, \frac{3}{2}\right)$.
- (e) If f is a monotonic function defined on an interval I, then identify the monotonic function on I.
 - (i) |f|

(ii) f^2

(iii) f^3

(iv) $f^2 - f$.

(f) Let
$$f(x) = \frac{\sin x}{x}$$
, $x \in (0, \frac{\pi}{2})$. Then $f(x)$ is a

- (i) strictly decreasing function on $(0, \frac{\pi}{2})$
- (ii) strictly increasing function on $(0, \frac{\pi}{2})$
- (iii) neither increasing nor decreasing function on $(0, \frac{\pi}{2})$
- (iv) None of the above.
- (g) If $\lim_{x\to 0} \frac{a\sin x \sin 2x}{\tan^3 x}$ is finite, then choose the correct value of 'a' from the following:
 - (i) a = 0

(ii) a = 2

(iii) a = 1

(iv) a = -1.

- (h) Which one of the functions does not satisfy the conditions of Rolle's theorem in [-1, 1]?
 - (i) $\frac{1}{x^2 + 4}$

(ii) $\sqrt{x^2 + 3}$

(iii) (iii)

(iv) $x^{\frac{2}{3}}$

- (i) f(x) = 1 |x| has
 - (i) maximum value at x = 0
 - (ii) minimum value at x = 0

- MURALIDHAR GIRLS' COLLEGE
- (iii) neither maximum nor minimum at x = 0
- (iv) None of the above.
- (j) Which one is uniformly continuous on the indicated interval?
 - (i) $f(x) = x^2$, on [a, b], $a \ge 0$
- (ii) $f(x) = \sin(1/x)$, on (0, 1)

(iii) $f(x) = \frac{1}{x}$, on (0, 1]

(iv) $f(x) = x^2$, on $[a, \infty)$, a > 0.

Group - B

(Marks : 25)

Answer any five questions.

- 2. (a) Let $D \subset \mathbb{R}$, f, g, h be functions on D to \mathbb{R} . Let $c \in D'$. If $f(x) \le g(x) \le h(x)$ for all $x \in D \{c\}$, and if $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = l$, then prove that $\lim_{x \to c} g(x) = l$.
 - (b) Evaluate $\lim_{x\to 0} \frac{\sin x}{x}$ applying the above.

3+2

3. (a) Prove or Disprove:

If $f: [a, b] \to \mathbb{R}$ is continuous at $c \in (a, b)$, then f is continuous on some neighbourhood of 'c'.

(b) Prove or Disprove:

The function $f(x) = x + [x], x \in [0, 2]$ is piecewise continuous in [0, 2].

2+3

- 4. (a) A real function f is continuous on [0, 2] and f(0) = f(2). Then show that there exists at least a point $c \in [0, 1]$ such that f(c) = f(c + 1).
 - (b) $f: [0, 1] \to \mathbb{R}$ is continuous on [0, 1] and f assumes only rational values on [0, 1]. Then show that f is constant.

- 5. (a) Give an example of a function f defined over an interval I such that f has oscillatory discontinuity at a point in I. Justify your answer.
 - (b) Let $f: [a, b] \to \mathbb{R}$ be a continuous function such that f(a) < 0, f(b) > 0 and $A = \{x \in [a, b]: f(x) < 0\}$. If $w = \sup A$, prove that f(w) = 0.
- **6.** (a) Let $f:(a, b) \to \mathbb{R}$ be a monotonically increasing function.
 - (i) If f is bounded below, show that Lt f(x) exists.

MURALIDHAR GIRLS' COLLÉGE LIBRARY

- (ii) If f is unbounded below, show that $Lt \atop x \to a+ f(x) = -\infty$.
- (b) Prove or disprove: There exists a monotonic function defined on [0, 1] such that the function is discontinuous at every irrational point in [0, 1].
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . For any real k, prove that the set $\{x \in \mathbb{R}: f(x) < k\}$ is an open set in \mathbb{R} . Hence or otherwise, prove that $\{x \in \mathbb{R}: \sin x = \frac{1}{2024}\}$ is a closed set in \mathbb{R} .
- 8. Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$ be uniformly continuous on D. If $\{x_n\}$ be a Cauchy sequence in D, then prove that $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} . Is it true when f is continuous on D?
- 9. Prove that the necessary and sufficient condition for a continuous function f on an open bounded interval (a, b) to be uniformly continuous on (a, b) is $\lim_{x \to a+} f(x)$ and $\lim_{x \to b-} f(x)$ both exist finitely. 3+2

Group - C
(Marks: 20)

Answer any four questions.

10. Find the domain of the derived function f', where f(x) is defined for x > 0 as follows

 $f(x) = \begin{cases} 1 - x^2, & 0 < x \le 1 \\ \log x, & 1 < x \le 2 \\ \log 2 - 1 + \frac{x}{2}, & x > 2 \end{cases}$

- 11. (a) If a function f(x) is derivable on a closed interval [a, b] and f'(a), f'(b) are of opposite signs, then prove that there exists at least one point $c \in (a, b)$ such that f'(c) = 0.
 - (b) Prove that there exists $x \in \left(0, \frac{\pi}{2}\right)$ such that $x = \cos x$.

- 12. (a) Show that $\left(1 \frac{1}{x}\right)^x > \left(1 \frac{1}{y}\right)^y$, if x > y > 1.
 - (b) Let $f(x + y) = f(x) f(y) \forall x, y \in \mathbb{R}$. Prove that f is derivable on \mathbb{R} if f is derivable at 1. 2+3
- 13. (a) Prove or disprove:

If the function f(x) is defined by

$$f(x) = \begin{cases} x; & x < 1 \\ 2x - 1; & x \ge 1 \end{cases}$$

is increasing at 1 but f is not differentiable at 1.

MURALIDHAR GIRLS' COLLEGE LIBRARY

- (b) Find 'a' and 'b' such that $\lim_{x \to 0} \frac{ae^x + be^{-x} + 2\sin x}{\sin x + x\cos x} = 2.$ 2+3
- 14. State and prove Cauchy's Mean Value theorem and deduce Lagrange's Mean Value theorem from it.
- 15. Expand e^x as an infinite series $(x \in \mathbb{R})$.
- 16. Find the greatest value of $x^m y^n$ (x, y > 0) and x + y = k (k is constant); m, n > 0.