2023

MATHEMATICS HONOURS

Paper: CC-3

(Real Analysis)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

N, Q, R denote the set of all natural, rational and real numbers respectively.

Notations and symbols have their usual meanings.

- 1. Answer all the following multiple choice questions. For each question 1 mark is for choosing the correct $(1+1)\times 10$ option and 1 mark is for justification.
 - (a) The derived set of the set $S = \left\{ \frac{n-1}{n+1} \middle| n = 1, 2, ... \right\} \cup \{2, 3\}$ is

(ii) {1} ∪ [2,3]

(iii) $\{0\}$

MURALIDHAR GIRLS' COLLEGE LIBRARY

(i) open

- (ii) closed
- (iii) both open and closed
- (iv) neither open nor closed.
- (c) A countable set of irrationals which is dense in R is
 - (i) the set $\mathbb{R} \setminus \mathbb{Q}$ of all irrationals (ii) $\mathbb{Q} \cup \{\sqrt{p} : p \text{ is a prime}\}$
- - (iii) $\{\sqrt{p} : p \text{ is a prime}\}$
- (iv) $\{\sqrt{2} r : r \in \mathbb{Q}\}.$
- (d) Let $A = [0, 1] \cap \mathbb{Q}$ and $B = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$. Then the set $A B = \{x y : x \in A, y \in B\}$ is
 - (i) empty

(ii) finite

(iii) enumerable

(iv) uncountable

- (e) The sequence $\left\{ \left(\frac{2}{3}\right)^n + \left(\frac{3}{2}\right)^n \right\}$
 - (i) converges to 0
- (ii) converges to 1
- (iii) converges to $\frac{13}{6}$
- (iv) diverges to $+\infty$.
- (f) Let $u_n = \sin \frac{n\pi}{2}$, $n \ge 1$. Then the subsequence $\{u_{2n-1}\}$
 - (i) is a convergent subsequence
 - (ii) diverges to $+\infty$
 - (iii) is a convergent subsequence and converges to
 - (iv) is oscillatory.
- (g) Let $u_n = \cos \frac{n\pi}{2}$, $v_n = \sin \frac{n\pi}{2}$. Then, $\lim_{n \to \infty} \sup (u_n + v_n)$ is equal to
 - (i) 0

(ii) 1

(iii) 2

(iv) -1.

MURALIDHAR GIRLS' COLLEGE

MCC Librar

(h) Which of the following is not a Cauchy sequence?

LIBRARY

- $\begin{cases}
 \frac{(-1)^n}{n} \\
 \vdots \\
 \frac{(-1)^n}{n}
 \end{cases}$ (ii) $\begin{cases}
 \left(1 + \frac{1}{n}\right)^n
 \end{cases}$
- (iii) $\begin{cases} n^{\frac{1}{n}} \end{cases}$

- (iv) $\left\{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right\}$
- (i) The series $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots$ converges for
 - (i) p > 1

(ii) p < 1

(iii) $p \le 1$

- (iv) $p \ge 1$
- (j) The infinite series $\frac{\sin \frac{\pi}{2}}{1 \cdot 2} \frac{\sin \frac{\pi}{2^2}}{2 \cdot 3} + \dots + (-1)^{n+1} \frac{\sin \frac{\pi}{2^n}}{n \cdot (n+1)} + \dots$ is
 - (i) divergent

- (ii) oscillatory
- (iii) conditionally convergent
- (iv) absolutely convergent.

Unit - 1

Answer any four questions.

- 2. State LUB Axiom of the set of real numbers, R. Hence deduce the Archimedean property of R.
- 3. (a) Prove or disprove: A countable set cannot have uncountable number of limit points.
 - (b) Show that the set $\{x \in \mathbb{R} : \sin x = 0\}$ is countable.

3+2

4. State and prove Bolzano Weierstrass Theorem on limit points.

.

- 5. (a) Find all the isolated points of $S = \left\{ \frac{n-1}{n+1} \middle/ n = 1, 2, 3, ... \right\} \cup (2, 3)$
 - (b) Prove or Disprove:

MURALIDHAR GIRLS' COLLEGE

 $S = \bigcup_{n=1}^{\infty} I_n$, where $I_n = \left\{ x \in \mathbb{R} : \left(\frac{1}{3}\right)^n \le x \le 1 \right\}$; is a closed set.

- 6. (a) Give an example of an unbounded countable subset of $\mathbb R$ having no limit points.
 - (b) Show that the set S is an open set where $S = \{x \in \mathbb{R} : |x-1| + |x-2| < 3\}$.
- 7. Prove or Disprove: Every infinite bounded set of rational numbers has a limit point in Q.
- 8. (a) Consider the intervals S = (0, 2] and T = [1, 3). Let S° and T° be the set of interior points of S and T respectively. Then find the set of all interior points of $S \setminus T$.
 - (b) Prove or disprove: Every uncountable set has a limit point.

273

Unit - 2

Answer any four questions.

- 9. (a) Prove that if the sequence $\{x_n\}_n$ converges to l, then the sequence $\{|x_n|\}_n$ converges to |l|. Is the converse true? Justify your answer.
 - (b) Give examples of two non-convergent sequence $\{x_n\}_n$ and $\{y_n\}_n$ such that sequences $\{x_n+y_n\}$ and $\{x_ny_n\}$ both converge. (2+1)+(1+1)
- 10. (a) Prove or disprove: If $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers such that $\lim_{n\to\infty} x_n = 0$ and

 $\{y_n\}$ is a bounded sequence, then $\lim_{n\to\infty} (x_n y_n) = 0$.

(b) If a > 0, prove that $\left\{ \frac{1}{a^n} - 1 \right\}$ is a null sequence.

Please Turn Over

11. (a) Define Cauchy sequence of real numbers. Using the definition show that $\left\{\frac{n}{n+1}\right\}$ is a Cauchy sequence.

(4)

- (b) Show that every Cauchy sequence is bounded. (1+2)+2
- 12. Let $\{[a_n, b_n]\}$ be a sequence of closed and bounded intervals, such that
 - (a) $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ for all $n \in \mathbb{N}$ and (b) $\lim_{n \to \infty} (b_n a_n) = 0$.

Show that $\bigcap_{n=1}^{\infty} [a_n, b_n]$ contains exactly one element.

- 13. Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2x_n}$ for all $n \ge 1$ is convergent. Find the limit of the sequence $\{x_n\}$.
- 14. Prove that every sequence of real numbers has a monotonic subsequence.
- 15. (a) State the Sandwich theorem.
 - (b) Prove that $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$ 2+3

Unit - 3 MURALIDHAR GIRLS' COLLEGE
Answer any one question.

- 16. (a) Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{\cos(3^n \pi)}{2^n}$
 - (b) Test the convergence of the series $\frac{1}{2} + 2 + \frac{1}{2^2} + 2^2 + \frac{1}{2^3} + 2^3 + \dots$ 3+2
- 17. (a) By comparison test, show that the series $\frac{1}{1\cdot 2^2} + \frac{1}{2\cdot 3^2} + \frac{1}{3\cdot 4^2} + \dots$ is a convergent series.
 - (b) Show that the series $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$ is absolutely convergent.