## 2022

## MATHEMATICS — HONOURS

Paper: DSE-A-1.1

(Advanced Algebra)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations have usual meanings.

Group - A

(Marks: 20)

- 1. Answer all questions. In each question one mark is reserved for selecting the correct option and one mark is reserved for justification: (1+1)×10
  - (a) Let S be a G-set where G is a group and S is a non-empty set. Then the relation  $\rho$  on S defined by: for  $a, b \in S$ ,  $a \rho b$  if and only if ga = b for some  $g \in G$  is
    - (i) reflexive and symmetric but not transitive
    - (ii) an equivalence relation

MURALIDHAR GIRLS' COLLEGE LIBRARY

- (iii) reflexive and transitive but not symmetric
- (iv) symmetric and transitive but not reflexive
- (b) A group of order 20 has
  - (i) 2 Sylow 5-subgroups
- (ii) 3 Sylow 5-subgroups
- (iii) 1 Sylow 5-subgroup
- (iv) 4 Sylow 5-subgroups.
- (c) Suppose that G is a finite group which has only two conjugacy classes. Then G has
  - (i) one element

(ii) two elements

(iii) three elements

- (iv) four elements.
- (d) The ring of integers  $(Z, +, \cdot)$  is
  - (i) a regular ring

(ii) not an integral domain

(iii) not a regular ring

- (iv) a field.
- (e) The units of  $(Z_{10}, +, \cdot)$  are
  - (i) [1], [3], [7], [9]

(ii) [1], [4], [5], [9]

(iii) [1], [7], [9]

(iv) [1], [9].

|           |          |                                                                                                                                                                                         | *                                                                         |     |  |  |  |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|--|--|--|
| B         |          | A                                                                                                                                                                                       |                                                                           |     |  |  |  |
| X(5th Sm. | )-M      | Tathematics-H/DSE-A-1.1/CBCS                                                                                                                                                            | (2)                                                                       | 9.  |  |  |  |
|           | f)       | The polynomial $x^4 + x^3 + x^2 + x + 1$ is  (i) reducible in $Z[x]$ (ii) reducible in $Q[x]$ (iii) irreducible in $Z[x]$ but reducible in (iv) irreducible in both $Z[x]$ and $Q[x]$ . |                                                                           |     |  |  |  |
| (         | g)       | Let S be a finite G-set, where $ G $ is 81                                                                                                                                              | Then if $H = \{a \in S : ga = a, \forall g \in G\}$ , then the difference |     |  |  |  |
| ibisity.  |          | of orders of S and H is divisible by  (i) 81  (iii) 9  Which one of the following is correct?  (i) The polynomial ring over the ring                                                    | (ii) 27<br>(iv) 3.                                                        | al. |  |  |  |
|           |          | (ii) The polynomial ring over the ring                                                                                                                                                  | of integers is a PIR.                                                     |     |  |  |  |
|           |          | (iii) The ring of integers is not a PIR.                                                                                                                                                |                                                                           |     |  |  |  |
|           |          | (iv) The polynomial ring over the ring                                                                                                                                                  | of integers is not a PID.                                                 |     |  |  |  |
|           | i)       | The quotient ring $\frac{Z}{\langle n \rangle}$ is a field, if                                                                                                                          |                                                                           |     |  |  |  |
|           |          | (i) n is an integer                                                                                                                                                                     | (ii) n is a natural number                                                | 7   |  |  |  |
| 10        |          | (iii) $n$ is a prime number                                                                                                                                                             | (iv) none of these.                                                       |     |  |  |  |
|           | j)       | If $R$ is a regular ring and $A$ is a right i                                                                                                                                           | deal and $B$ is a left ideal of $R$ , then                                |     |  |  |  |
|           |          | (i) $A \cap B = AB$                                                                                                                                                                     | (ii) $A \cap B \neq AB$                                                   |     |  |  |  |
|           |          | (iii) $A \cup B = AB$                                                                                                                                                                   | (iv) $A \cup B \neq AB$ .                                                 |     |  |  |  |
|           |          | G                                                                                                                                                                                       | roup - B                                                                  |     |  |  |  |
|           |          |                                                                                                                                                                                         | MURALIDHAR GIRLS' COLLEGE LIBRARY                                         |     |  |  |  |
|           |          | wer any three questions:                                                                                                                                                                |                                                                           |     |  |  |  |
| 1.0       |          | G has a subgroup of order $p$ .                                                                                                                                                         | I let $p$ be a prime number where $p$ divides $n$ . Prove that            | t , |  |  |  |
|           | b)       | Show that every group of order 45 has a normal subgroup of order 9.                                                                                                                     |                                                                           |     |  |  |  |
|           | c)       |                                                                                                                                                                                         |                                                                           |     |  |  |  |
| (         | (d)      | - Jion / Subgroups.                                                                                                                                                                     |                                                                           |     |  |  |  |
| ,         | ·<br>'~\ | (ii) Let G be a group and S be a G-set. Define stabilizer of an element $a \in S$ .  4+1                                                                                                |                                                                           |     |  |  |  |
|           | (e)      | (i) Let C be a group of order 25. Prove that C:                                                                                                                                         |                                                                           |     |  |  |  |
|           |          | (ii) Let G be a group of order 33. Fr                                                                                                                                                   | ove that G is commutative.                                                | 2   |  |  |  |
| ipiaid    |          | Hisioli.                                                                                                                                                                                | ipiain, ipi                                                               |     |  |  |  |
| /         |          |                                                                                                                                                                                         |                                                                           |     |  |  |  |

## Group - C

(Marks: 30)

| 3. | Answer | any | six | questions | : |
|----|--------|-----|-----|-----------|---|
|----|--------|-----|-----|-----------|---|

- (a) (i) Prove that the ring Z of all integers is a principal ideal domain.
  - (ii) Give an example of a ring which is not a principal ideal domain. Justify your answer. 3+2
- (b) (i) Define a Euclidean domain. Prove that every Euclidean domain is a principal ideal domain.
  - (ii) Give an example of a principal ideal domain which is not a Euclidean domain (justification is not required).

    1+3+1
- (c) Prove that every integral domain can be embedded in a field.
- (d) Define a unique factorization domain. Prove that in a unique factorization domain, every irreducible element is prime.
- (e) When is a ring said to be regular? Prove that every field is a regular ring. Is every integral domain a regular ring? Justify your answer.

  1+2+2
- (f) Show that -1 + 2i is a g.c.d of 11 + 3i and 1 + 8i in Z[i].
- (g) Show that  $\ell$ .c.m. of 2 and  $1+\sqrt{-5}$  does not exist in  $Z[\sqrt{-5}]$ .
- (h) (i) When a ring is said to satisfy ascending chain condition for principal ideals (ACCP)?
  - (ii) Prove that every PID satisfies ACCP.
- (i) Let  $f(x) \in F(x)$ , where F is a field, be a polynomial of degree 2 or 3. Then prove that f(x) is irreducible over F if and only if f(x) has no roots in F.
- (j) (i) If  $f(x) = x^4 + 2x^2 + 1$ , prove that it has no root in Q but is reducible over Z.
  - (ii) Prove that  $f(x) = x^5 + 15x^3 + 10x + 5$  is irreducible in Z[x].

3+2

CCIN

5

