2022

MATHEMATICS — GENERAL

Paper: GE/CC-2

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

(Throughout the question paper, notations/symbols carry their usual meanings)

১। সঠিক উত্তরটি বেছে লেখোঃ

MURALIDHAR GIRLS' COLLEGE

(ক) $\{x_n\}$ অনুক্রমটি, যেখানে $x_n=rac{1}{n}\sinrac{n\pi}{2}$ হল

(অ) অভিসারী

(আ) অপসারী

(ই) দোদুল্যমান

(ঈ) এদের কোনোটিই নয়।

(খ) $\sum u_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} + \dots$ শ্ৰেণিটি

(অ) অভিসারী

(আ) অপসারী

(ই) দোদুল্যমান

(ঈ) এদের কোনোটিই নয়।

(গ) Lagrange's Mean Value Theorem টি পাওয়া যাবে Cauchy's Mean Value Theorem-এর দুটি functions, f(x) এবং g(x) থেকে, যেখানে g(x)-এর সমান হবে

(অ) x^2

(আ) x

(氢) 1

(ঈ) এদের কোনোটিই নয়।

(ঘ) $\frac{d^2y}{dx^2} + 9y = 0$; অবকল সমীকরণটির সমাধান হবে

(va) $y = Ae^{3x} + Be^{-3x}$

(আ) $(A + Bx)e^{-3x}$

 $(\mathfrak{F}) \quad y = (A\cos x + B\sin x)$

 $(\overline{\aleph}) \quad y = (A\cos 3x + B\sin 3x)$

(ঙ) যদি দুটি ভেক্টর \vec{a} এবং \vec{b} -এর জন্য $|\vec{a}+\vec{b}\>|=|\vec{a}-\vec{b}\>|$ হয়, তবে \vec{a} এবং \vec{b} ভেক্টর দুটি

(অ) সমরেখ (Collinear)

- (আ) সমান্তরাল (Parallel)
- (ই) অর্থোগোনাল (Orthogonal)
- (ঈ) এদের কোনোটিই নয়।

Please Turn Over

(চ) বুলিয়ান বীজগণিতে (a+b+c)'=

(আ)
$$a' + b' + c'$$

$$(\overline{\mathfrak{F}}) \ a' + (b+c)'$$

এদের কোনোর্টিই নয়।

(ছ) $\lim_{x \to \infty} \frac{x^4}{e^x}$ -এর মান

(অ) 1

জ) যদি $f(x) = x^5 - 5x^4 + 5x^3 + 10$, $x \in \mathbb{R}$ হয়, তাহলে

(অ) x = 0-তে f-এর চরম মান আছে

MURALIDHAR GIRLS' COLLEGE

UCC / ilpical

- (আ) x = 0-তে f-এর অবম মান আছে
- (ই) x = 0-তে f-এর চরম বা অবম কোনো মান নাই
- (ঈ) এদের কোনোর্টিই নয়।

(ঝ) $z=(x-a)^2+(y-b)^2$ অপেক্ষকটি থেকে $a(\neq 0)$ এবং $b(\neq 0)$ অপসারণ করলে যে আংশিক অবকল সমীকরণ পাওয়া যাবে সেটি হল

(অ)
$$p+q=4z$$

(আ)
$$p^2 + q^2 = 2z$$

(ঈ) $p^2 + q^2 = 4z$

(3)
$$p^2 - q^2 = 4z$$

$$(\overline{\mathfrak{R}}) \quad p^2 + q^2 = 4z$$

(এঃ) n-এর মান নির্ণয় করো, যেখানে n^3+1 একটি মৌলিক সংখ্যা, n একটি ধনাত্মক পূর্ণসংখ্যা।

(অ)
$$n=1$$

(আ)
$$n=2$$

(
$$\overline{z}$$
) $n=3$

(茅)
$$n=5$$

বিভাগ - খ

[Differential Calculus-II]

যে-কোনো তিনটি প্রশ্নের উত্তর দাও।

২। দেখাও যে, $\{x_n\}$ অনুক্রমটি যথার্থ ক্রমহ্রাসমান যখন $x_n=rac{n+1}{2n+1},\ n\in\mathbb{N}$, এবং তাই (hence) প্রমাণ করো এটি অভিসারী। **७+**३

৩। (ক) $f(x) = e^{\sin x}$ অপেক্ষকটিতে $[0, \pi]$ অন্তরে Rolle's Theorem প্রয়োগ করা যাবে কি না পরীক্ষা করে দেখাও।

(খ)
$$\lim_{x\to\pi} \frac{\sin x}{\pi-x}$$
 -এর মান নির্ণয় করো

৩+২

8। $f(x) = \sin x$ -কে x-এর power-এ প্রসারিত (expand) করো এবং প্রসারণের বৈধতা দেখাও।

- ৫। (ক) দুটি সীমাবদ্ধ অনুক্রমের উদাহরণ দাও যার একটি অভিসারী (convergent) এবং অন্যটি অপসারী (divergent) অনুক্রম।
 - (খ) Cauchy-এর সাধারণ পদ্ধতি ব্যবহার করে দেখাও যে, $\{x_n\}$ অনুক্রমটি অভিসারী যেখানে, $x_n=1+\frac{1}{\lfloor 2}+\frac{1}{\lfloor 3}+...+\frac{1}{\lfloor n \rfloor}$ । ২+৩

৬।
$$f(x) = \frac{4}{x} + \frac{36}{2-x}$$
 অপেক্ষকটির চরম ও অবম মান (যদি থাকে) নির্ণয় করো।

Ć

বিভাগ - গ

[Differential Equation-II]

ইউনিট - ২

(মান : ৫)

যে-কোনো একটি প্রশ্নের উত্তর দাও।

৭। সমাধান করো ঃ
$$(x+a)^2 \frac{d^2y}{dx^2} - 4(x+a)\frac{dy}{dx} + 6y = 0$$
।

MURALIDHAR GIRLS' COLLEGE LIBRARY

Œ

৮। আংশিক অবকল সমীকরণটি (Partial Differential Equation) সমাধান করো ঃ $(y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial z}{\partial y} = x-y$ । ে

বিভাগ - ঘ

[Vector Algebra]

ইউনিট - ৩

(মান : ৫)

যে-কোনো একটি প্রশ্নের উত্তর দাও।

- ৯। কোনো কণার উপর $\left(4\hat{i}+\hat{j}-3\hat{k}\right)$ এবং $\left(3\hat{i}+\hat{j}-\hat{k}\right)$ বল দুটি ক্রিয়াশীল হয়ে কণাটিকে $\left(\hat{i}+2\hat{j}+3\hat{k}\right)$ বিন্দু হতে $\left(5\hat{i}+4\hat{j}-\hat{k}\right)$ বিন্দুতে স্থানান্তরিত করলে সম্পাদিত কার্যের পরিমাণ নির্ণয় করো।
- ১০। ভেক্টর পদ্ধতির সাহায্যে প্রমাণ করো, ত্রিভূজের শীর্ষবিন্দু থেকে বিপরীত বাহুগুলির উপর লম্বগুলি সমবিন্দু।

œ

বিভাগ - ঙ

(4)

[Discrete Mathematics]

ইউনিট - ৪

(মান : ৩০)

যে-কোনো তিনটি প্রশ্নের উত্তর দাও।

১১। (ক) Mathematical Induction-এর সাহায্যে প্রমাণ করো যে,

$$\frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \frac{1}{7\cdot 9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}; n \in \mathbb{N}$$

(খ) 2x + 3y = 50-এর ধনাত্মক পূর্ণসংখ্যার সমাধান (Positive integral solutions) নির্ণয় করো।

0+0

MCC librais

১২। (ক) নিম্নলিখিত সিস্টেম অফ্ কনগ্রুয়েন্স (System of Congruence)টির সমাধান করো ঃ

 $x \equiv 1 \pmod{3}$

 $x \equiv 1 \pmod{5}$ $x \equiv 2 \pmod{4}$

MURALIDHAR GIRLS' COLLEGE LIBRARY

 $x \equiv 3 \pmod{5}$

(খ) পাঁচ সদস্যের একটি Round-Robin tournament-এর schedule গঠন করো।

¢+¢

- **১৩।** (ক) 7³²-কে 5 দিয়ে ভাগ করার পর অবশেষ কত থাকবে?
 - (খ) Wilson উপপাদ্যের সাহায্যে প্রমাণ করো 18! + 1 সংখ্যাটি 23 দ্বারা বিভাজ্য।

0+0

- ১৪। (ক) যদি $\gcd(a,b)=1$ হয়, তবে দেখাও যে $\gcd(a+b,a^2-ab+b^2)=1$ অথবা 3।
 - (খ) যদি p একটি অযুগ্ম মৌলিক সংখ্যা হয়, প্রমাণ করো যে $1^{p-1}+2^{p-1}+3^{p-1}+...+(p-1)^{p-1}\equiv -1\pmod p$
- ১৫। (ক) বুলীয় বীজগাণিতিক পদ্ধতির সাহায্যে প্রমাণ করো যে, $(a+b)'=a'\cdot b'$ ।
 - (খ) একটি Switching Circuit নির্মাণ করো যেটি এই বুলীয় রাশিকে প্রকাশ করে ঃ xyz + xyz' + xy'z + x'yz Circuit-টিকে সরলীকৃত করো। e+e

[English Version]

The figures in the margin indicate full marks.

Group - A

(Marks: 10)

1.	Chaaca	tha	aneront	alternativ	
1.	CHOOSE	LHC	COFFECE	anernany	es :

MURALIDHAR GIRLS' COLLEGE LIBRARY

1×10

- (a) The sequence $\{x_n\}$, where $x_n = \frac{1}{n}\sin\frac{n\pi}{2}$ is
 - (i) convergent

(ii) divergent

(iii) oscillatory

- (iv) None of these.
- (b) The series $\sum u_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} + \dots$
 - (i) convergent

(ii) divergent

(iii) oscillatory

- (iv) None of these.
- (c) Lagrange's Mean Value Theorem is obtained from Cauchy's Mean Value Theorem for two functions f(x) and g(x) by putting g(x) is equal to
 - (i) x^2

(ii) x

(iii) 1

- (iv) None of these.
- (d) The general solution of the ordinary differential equation $\frac{d^2y}{dx^2} + 9y = 0$ is
 - (i) $y = Ae^{3x} + Be^{-3x}$

(ii) $(A + Bx)e^{-3x}$

(iii) $y = (A\cos x + B\sin x)$

- (iv) $y = (A\cos 3x + B\sin 3x)$
- (e) If for two vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, then \vec{a} and \vec{b} are
 - (i) Collinear

(ii) Parallel

(iii) Orthogonal

- (iv) None of these.
- (f) In a Boolean Algebra (a+b+c)'=
 - (i) a'b'c'

(ii) a' + b' + c'

(iii) a' + (b+c)'

(iv) None of these.

- (g) The value of $\lim_{x \to \infty} \frac{x^4}{e^x}$ is
 - (i)

(ii) C

(iii) -1

(iv) ∞.

(i) $p + q = 4z$	(ii) $p^2 + q^2 = 2z$	
(iii) $p^2 - q^2 = 4z$	(ii) $p^2 + q^2 = 2z$ (iv) $p^2 + q^2 = 4z$	42
(j) If n is a positive integer such that $n^3 + 1$	⊢ 1 is a prime, then	.10,
(i) $n = 1$	(ii) $n=2$	
(iii) $n=3$	(iv) $n = 5$.	
G	Group B	
[Differen	tial Calculus-II]	
ı	Unit - 1	
(M	(arks: 15)	
Answer an	y three questions.	12
	::0	:10)
2. If $x_n = \frac{n+1}{2n+1}$, $n \in \mathbb{N}$; show that the sequence	e $\{x_n\}$ is strictly monotonic decreasing and hence pr	ove that
it is convergent.		3+2
3 (a) Is Polle's Theorem applicable to the fi	wasti Sipri to to to	312
3. (a) Is Rolle's Theorem applicable to the fu	inction $e^{\sin t}$ in $[0, \pi]$? Justify your answer.	
(b) Find the value of $\lim_{x\to\pi} \frac{\sin x}{\pi - x}$.		
$(5) \text{Ind the value of } x \to \pi \pi - x$		3+2
4. Expand $f(x) = \sin x$ in power of x, stating the	ne validity of the expansion	-
		3
5. (a) Give examples of two bounded sequence	ces of which one is convergent and the other is di	ivergent.
(b) Use Cauchy's general principle of	convergence to prove that the sequence $\{x_n\}$, where
$x_n = 1 + \frac{1}{ 2 } + \frac{1}{ 3 } + \dots + \frac{1}{ n }$ is convergent.		
" $ 2 $ 3 n is sometiment.		2+3

6. Find the maximum and minimum value (if exists) of the function $f(x) = \frac{4}{x}$

(6)

(i) The partial differential equation obtained by eliminating the arbitrary constant $a(\neq 0)$ and $b(\neq 0)$ from

MURALIDHAR GIRLS' COLLEGE

LIBRARY

5

X(2nd Sm.)-Mathematics-G/(GE/CC-2)/CBCS

(h) If $f(x) = x^5 - 5x^4 + 5x^3 + 10$, $x \in \mathbb{R}$, then

the function $z = (x-a)^2 + (y-b)^2$ is

(iii) f has neither maximum nor minimum at x = 0

(i) f has maximum at x = 0

(ii) f has minimum at x = 0

(iv) None of these.

Group - C

[Differential Equation-II]

Unit - 2

(Marks: 5)

Answer any one question.

7. Solve:
$$(x+a)^2 \frac{d^2 y}{dx^2} - 4(x+a) \frac{dy}{dx} + 6y = 0$$
.

8. Solve the Partial Differential Equation $(y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial z}{\partial y} = x-y$.

Group - D

[Vector Algebra]

Unit - 3 MURALIDHAR GIRLS' COLLEGE
(Marks: 5) - LIBRARY

Answer any one question.

- 9. A particle being acted on by constant forces $(4\hat{i} + \hat{j} 3\hat{k})$ and $(3\hat{i} + \hat{j} \hat{k})$, is displaced from the point $(\hat{i} + 2\hat{j} + 3\hat{k})$ to the point $(5\hat{i} + 4\hat{j} \hat{k})$. Find the total work done.
- 10. Show by vector method, that the perpendiculars from the vertices of a triangle to the opposite sides are concurrent.

Group - E

[Discrete Mathematics]

Unit - 4

(Marks : 30)

Answer any three questions.

11. (a) Prove by Mathematical Induction

$$\frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \frac{1}{7\cdot 9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}; n \in \mathbb{N}.$$

(b) Find all positive integral solutions of 2x + 3y = 50.

5+5

12. (a) Solve the following system of congruences:

 $x \equiv 1 \pmod{3}$

MURALIDHAR GIRLS' COLLEGE LIBRARY

 $x \equiv 2 \pmod{4}$ $x \equiv 3 \pmod{5}$

(b) Find a Round-Robin tournament schedule for 5 teams.

MGC Lilbrar

13. (a) Find the remainder when 7^{32} is divided by 5.

MCC Library

(b) Using Wilson theorem prove that 18! + 1 is divisible by 23.

5+5

Vec lipist

MacClibran

- 14. (a) If gcd(a, b) = 1, then prove that $gcd(a + b, a^2 ab + b^2) = 1$ or 3.
 - (b) If p is odd prime, then prove that $1^{p-1} + 2^{p-1} + 3^{p-1} + ... + (p-1)^{p-1} \equiv -1 \pmod{p}$.
- 15. (a) By Boolean algebraic method, prove that, $(a+b)' = a' \cdot b'$.
 - (b) Construct a switching circuit which represent by the Boolean expression: xyz + xyz' + xy'z + x'yz. Simplify the switching circuit.