2023

CHEMISTRY — HONOURS

Paper: CC-11

(Physical Chemistry - 4)

Full Marks: 50

MURALIDHAR GIRLS' COLLEGE LIBRARY

The figures in the margin indicate full marks.

393113:

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:

1×10

(a) Find out the average amplitude of oscillation $\langle x \rangle$ of a harmonic oscillator in its ground state

$$\left(given \, \psi_0 = \left(\frac{\alpha}{\pi} \right)^{\frac{1}{4}} e^{-\frac{\alpha x^2}{2}} \right)$$

- (b) What approximation method do we choose to solve a many-electron problem and why is it necessary?
- (c) "The angular momentum operators $\widehat{L_x}$, $\widehat{L_y}$ and $\widehat{L_z}$ commute with each other."— Comment on the statement.
- (d) How do cannonical and grand cannonical ensembles differ? Which type of systems do they describe?
- (e) Name one paramagnetic salt that is generally used in the adiabatic demagnetization process.
- (f) How would you define partition function of a system in a phase space?
- (g) Why Trapezoidal rule is called so?
- (h) "Though Newton-Raphson method converges rapidly, it requires more computing time."— Comment of the statement.
- (i) Write down the potential energy V(r) operator of a central force problem like Hydrogen atom.
- (j) Can Maxwell-Boltzmann statistics to be applied to a system of real gas?— Explain.
- (k) Why can not temperature below 1 Kelvin be obtained using liquid Helium?
- (l) Write the expression of the Hamiltonian operator of the Helium atom in atomic unit.

Please Turn Over

2. (a) Find out the normalising factor of the wave function (ψ_1) of a harmonic oscillator at v = 1 level. Also show that ψ_0 and ψ_1 of a harmonic oscillator are orthogonal.

[Given: $\psi_0(x) = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} e^{\frac{-\alpha x^2}{2}}; \psi_1(x) = A.x.e^{\frac{-\alpha x^2}{2}}, \text{ where } A \text{ is the normalization constant.}$

Integration $\int_{0}^{\alpha} x^{2n} e^{-\alpha x^{2}} dx = \frac{(2n)!}{2^{2n+1} \cdot n!} \left(\frac{\pi}{\alpha^{2n+1}}\right)^{\frac{1}{2}}, \alpha > 0 \text{ where } n \text{ is a positive integer}].$

MURALIDHAR GIRLS' COLLEGE

- (b) Calculate the $\langle p_x^2 \rangle$ for harmonic oscillator in its ground state.
- 3. (a) Express the $\widehat{L^2}$ and $\widehat{L_y}$ in spherical polar coordinate and show whether they are simultaneously accurately measurable or not.
 - (b) Using the expression of $\widehat{L^2}$, find out the kinetic energy of a rigid rotator having the wave function

$$Y_1^1(\theta,\phi) = \left(\frac{3}{8\pi}\right)^{\frac{1}{2}} \sin\theta e^{i\phi} .$$
 3+2

- 4. (a) Find out the probability density of finding the 1s electron of Hydrogen atom (with wave function $\frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{\frac{3}{2}} e^{\frac{r}{a_0}}$) at the nucleus and at the first Bohr orbit a_0 .
 - (b) Find out the probability of finding the 1s electron in the first Bohr orbit and at a distance of $1\times10^{-4}~a_0$ from the nucleus. Comment on the result.
- 5. (a) Considering a trial wavefunction for the particle in a box (PIB) problem to be $\phi = x(L-x)$. With appropriate boundary conditions, the Hamiltonian being $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$, the box being 1-D, find the expected ground state energy expression, where 'L' is the length of the 1-D box.
 - (b) What are the properties to be considered when we choose the trial wave function for a one-dimensional (PIB) box?
- 6. (a) State the Born-Oppenheimer approximation as used in LCAO method.
 - (b) State limitations of the LCAO-MO and V_B treatments of Hydrogen (3 each). 2+3

7. Show that the two maxima of $r^2\psi_{2s}(r)$ against r occur at $(3\pm\sqrt{5})a_0$. Find the nodal point for the radial distribution for ψ_{2s} wavefunction.

Given:
$$\psi_{2S} = \sqrt{\frac{1}{32\pi}} \cdot \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \cdot \left(2 - \frac{r}{a_0}\right) e^{-\frac{r}{2a_0}}$$
.

MURALIDHAR GIRLS' COLLEGE

LIBRARY

- 8. (a) Calculate the value of In5! with and without Sterling's approximation. Comment on the result.
 - (b) For a system having three energy levels 0, ϵ and 2ϵ , where $\epsilon = 4.267 \times 10^{-14}$ erg, find out the probability function $\left(\frac{1}{z}\right)$ at 300 K, 400 K and 800 K. Interpret the results. (where z = partition function)
- 9. (a) Calculate the thermodynamic probabilities of arranging 6 classical particles among three energy levels having configurations (6,0,0), (5,1,0), (4,1,1), (3,2,1), (2,2,2) and (4,2,0). Show clearly which configuration will be the most dominating configuration.
 - (b) Could you guess the above answer without doing any calculation? Explain. 3+2
- 10. (a) For a system the available energy levels are 0, ϵ , 2ϵ and 3ϵ , where $\epsilon = 4.14 \times 10^{-21}$ erg and the degeneracy of the levels are 1,1,3,5 respectively. Find out the molecular partition function at 300 K.
 - (b) At what altitude, the atmospheric pressure gets reduced to its $\frac{1}{4}$ th? [Assume average value of temp = 250 K and the average molar mass = 0.029 kg mol⁻¹]
- 11. (a) One mole of an ideal gas is allowed to expand at 300 K from 1 lit to 5 lit. Find out the magnitude of the Boltzmann constant k.
 - (b) In an experiment, the ratios of the number of molecules in the excited levels with respect to the ground level are given below:

$\epsilon_i - \epsilon_0$	$5.52 \times 10^{-21} \text{J}$	$1.104 \times 10^{-20} \mathrm{J}$	$1.104 \times 10^{-19} \mathrm{J}$
$n_i - n_0$	0.368	0.135	2.06×10^{-9}

Calculate the temperature of the system applying Boltzmann distribution law.

21/2+21/2

- 12. (a) Evaluate $I = \int_{0}^{1} \frac{1}{1+x} dx$ correct to three decimal places, using h = 0.5 using both Trapezoidal and Simpson rules.
 - (b) Comment on the accuracy of these two rules. (Given the exact value of the integral = 0.693147) 3+2

Please Turn Over

Z(5th Sm.)-Chemistry-H/CC-11/CBCS

iorary

MCClibrary

MCClibrain

MCClibialy

ibialy.

(4)

13. Determine the constants 'a' and 'b' by the method of least squares such that $y = a e^{bx}$ fits the following sets of data:

x	2	4	6	8	10
y , *	4.077	11.084	30.128	81.897	222 · 62

MUEALEMAN

MCCliptan

MCCliptan

I IN all

MCClibraid

MCClibraid

ibialy.