2022

CHEMISTRY — HONOURS

Paper: CC-12

(Organic Chemistry)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 (compulsory) and any eight (8) questions from the rest (question no. 2 to 12).

1. Answer any ten questions:

1×10

- (a) Why 2, 3-ditertiarybutyl-buta-1, 3-diene does not undergo Diels-Alder reaction?
- (b) Why 9 or 10 position of anthracene is more reactive than any other position?
- (c) Designate the structures of possible dipeptides which on hydrolysis afford one mole of glycine and one mole of alanine.
- (d) Why do glycosides not react with either Fehling's or Tollens' reagent?
- (e) What are the bases common both in DNA and RNA? (Structures not needed).
- (f) Why indole-3-aldehyde cannot undergo Cannizzaro reaction?
- (g) Why is conrotatory ring closure of $(4n + 2)\pi$ system photochemically allowed?
- (h) Give an example of a substituted cyclohexane system where the conformation with axial substituent is more stable than the equatorial one.
- (i) Furan undergoes Diels-Alder reaction, but pyrrole does not. Explain.
- (i) Write down the structure of one pyrimidine base present in RNA only.
- (k) Why 1,2-bond of naphthalene is shorter than 2,3-bond?
- (1) What are the number of gauche-butane interactions present in the following compound?

*MURALIDHAR GIRLS' COLLEGE LIBRARY

- 2. (a) Explain why anthracene cannot be prepared from naphthalene by Friedel-Crafts reaction with succinic anhydride.
 - (b) Write down the mechanism of bromination of phenanthrene.

3+2

- 3. (a) cis-cyclohexane-1,3-diol is oxidised by HIO₄ more rapidly than corresponding trans-isomer. Explain
 - (b) What happens when *cis* and *trans* isomers of 3-hydroxycyclohexanecarboxylic acid are heated separately?
- 4. (a) Convert open chain structure of D-galactose to β-D-galactopyranose and explain which form is more stable between 4C_1 and 1C_4 .
 - (b) Why specific rotation of β -D-galactopyranose changes rapidly when dissolved in water? 3+2
- 5. (a) Predict the product of the following reaction and justify the formation in terms of FMO interaction.

$$\begin{array}{c|c} CH_3 & + & O & \Delta \\ \hline CH_3 & + & O & \hline \end{array}$$

(b) Suggest mechanism for the following transformation and depict the stereochemistry of the chiral centre.

3+2

6. (a) Write the products when [A] is cyclised thermally and photochemically separately. Show FMO interaction and Woodward-Hoffman rule to explain the formation of products.

MURALIDHAR GIRLS' COLLEGE Ph H Ph

(b) Write down the product of the following reaction with plausible mechanism.

Indole-2-acetic acid Acidulated water

7. (a) Identify [B] to [E] of the following sequence of reactions

$$\begin{array}{c|c} CH_2\text{-}CH_2Br \\ \hline & Mg/dry \text{ ether} \\ \hline & & \\ \hline & &$$

- (b) What happens when pyridine-N-oxide is heated with acetic anhydride followed by hydrolysis of the product?

 3+2
- 8. (a) Write down Sanger's degradation method for the N-terminal amino acid determination of the tripeptide ala-gly-phe.
 - (b) Write down the reaction of proline with ninhydrin.

3+2

- 9. (a) Synthesise glutamic acid via phthalimidomalonic ester synthesis.
 - (b) Provide the structures of the nucleosides of
 - (i) Deoxyribose with cytosine
 - (ii) Ribose with guanine.

3+2

- 10. (a) (i) Account for the formation of diketal from the reaction of D-glucose with acetone in sulphuric acid.
 - (ii) Using the above technique convert D-glucose to D-3-benzylglucose.
 - (b) Convert D-arabinose to D-mannose.

3+2

- 11. (a) Write down the mechanism of hydrolysis of adenosine and uridine. Which one undergoes more rapid hydrolysis in aqueous acid? Give reason in favour of your answer.
 - (b) Write down the structure of cyclic AMP. When it is treated with aqueous sodium hydroxide, the major product is adenosine-3'-monophosphate rather than adenosine-5'-monophosphate. Explain the observation.
- 12. (a) Give the structures of $[\underline{F}]$ to $[\underline{K}]$ of the following:

$$\begin{array}{c|c} & CH_2OH \\ HO & HO \\ HO & OH \end{array} \longrightarrow \begin{array}{c} PhCHO/ZnCl_2 \\ F] + [G] & HIO_4 \\ \hline \\ HO & OH \\ \hline \\ CH_2OH \end{array} \longrightarrow \begin{array}{c} [I] + [K] \\ \hline \\ MURALIDHAR GIRLS' COLLEGE \\ \hline \\ LIBRARY \end{array}$$

(b) Provide an explanation for the fact that under the same condition (NaOEt/EtOH at 75°C), the *cis*-isomer of 4-tertiarybutylcyclohexyl tosylate undergoes a facile E2 elimination reaction, but the *trans*-isomer does not.