2019

CHEMISTRY — HONOURS

Paper: CC-4

(Inorganic Chemistry - 2)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 (Compulsory) and any eight questions from the rest. (question nos. 2 to 14)

1. Answer the following questions:

1×10

- (a) Which one is more soluble in water: KClO₄ or NaClO₄, and why?
- (b) Write MO configuration of F₂⁺.
- (c) Give one example of 'K-electron Capture'.
- (d) Identify n or p type semiconductor in the following : V_2O_5 and CoO.
- (e) Give the order of thermal stability among the following: CaCO₃, MgCO₃, BeCO₃.
- (f) Complete the following process:

$${}^{11}_{6}$$
C \rightarrow + + γ .

- (g) Predict the number of unpaired electrons in O2+
- (h) Explain: dipole moment of CO is exceedingly small.
- (i) Predict the order of H-bond dissociation enthalpies of the following :
 - (i) $FH.....F^-$ (ii) FH....FH (iii) $H-OH....F^-$.
- (j) Which of the following has smallest bond angle $H \widehat{X} H$? NH_3 and PH_3 ?
- 2. (a) Indicate the hybridisation of the central atom and predict the shapes of the following: $IO_2F_2^-$, XeF_5^+ , F_2SeO .
 - (b) Calculate the limiting radius ratio (r^+/r^-) of CaF_2 structure.

3+2

(2)3. (a) Justify the feasibility of the formation of a hypothetical compound NaCl₂ by using the following data: Lattice energy (NaCl₂) = 2154 kJ mol^{-1} IP_1 and IP_2 of Na = 494 and 4563 kJ mol⁻¹ $EA of Cl = -347 \text{ kJ mol}^{-1}$ ΔH_{sub} (Na) = 109 kJ mol⁻¹. (b) Dipole moment of R_3NO is much greater than that of R_3PO . — Justify. 3+24. (a) Predict and justify the larger bond angles in the following pairs: (i) I_3^- and I_3^+ (ii) NO₂⁺ and NO₂⁻. (b) PbCl₄ is liquid but PbCl₂ is solid. — Explain. 3+25. (a) Write the reasonable electron.dot structure and assign the formal charges for each of the following: (i) ClF₃ (ii) NO₃ (b) ZnO is yellow when hot and white when cold. — Explain. 3+2**6.** (a) The degree of covalency in the following compounds runs as: $ZnX_2 \le CdX_2 \le Hg X_2$ (x = Cl, Br, I) — Explain. (b) CH₃ radical is planar but CH₂F radical is pyramidal. — Comment. 3+27. (a) Construct the M.O. diagram of NO⁺ and find the bond order in the species. (b) Predict and explain the order of boiling points in the following: H_2O , CH_3OH , CH_3-O-CH_3 . 3+28. (a) CO and N_2 are isoelectronic species but CO can act as a potential ligand while N_2 cannot. — Explain. (b) HF₂⁻ exists but HBr₂⁻ does not. — Justify. 3+29. (a) Identify the nature of crystal defects found in KBr and AgI and explain. (b) Both NaHCO₃ and H₃BO₃ have low solubility in water. — Comment. 3+210. (a) What are intrinsic and extrinsic semiconductors? Identify the type of semiconduction (n or p) expected from the following and explain. (i) Ga doped Be (ii) As doped Ge.

(b) In CH_2F_2 , $\angle H - C - H$ is greater than that of $\angle F - C - F$. — Explain.

3+2

- 11. (a) Which of the molecules are expected to be stabilized by (i) addition of an electron or, (ii) removal of an electron. (i) C₂ (ii) O₂
 - (b) Comment on the trend in boiling points:

$$NF_3$$
 < NMe_3
- 129°C 3.5°C

3+2

- 12. (a) Fission of heavier nuclides and fusion of lighter nuclides are expected from the nuclear binding energy curve. Explain.
 - (b) A piece of wood was found to have 14 C / 12 C ratio 0.7 times that in a living plant. Calculate the approximate period when the plant died. ($t_{1/2} = 5760$ years)
- 13. (a) How meson-exchange theory explains the nuclear stability?
 - (b) ${}_{4}^{7}$ Be may be converted to ${}_{3}^{7}$ Li either by positron emission or by orbital electron capture. Comment on the feasibility of these processes from the following mass data: 3+2

⁷₄Be: 7.01693 u

⁷₃Li: 7.01600 u

e: 0.00055 u

- 14. (a) What do you mean by artificial transmutation? Give two examples with one application in each case.
 - (b) Calculate the energy liberated in the fission of 0.5 gm of 235 U. Average binding energy per nucleon (MeV): 235 U = 7.6, Fission products = 8.5