2018

CHEMISTRY - HONOURS

Paper: CC-1

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Write the answers to *Inorganic Chemistry* (Group-A) and *Organic Chemistry* (Group-B) questions in *separate* answer scripts.

Group-A

[Inorganic Chemistry]

Answer question no. 1 (compulsory) and any five questions from the rest (question nos. 2 to 9)

1. Answer the following questions:

 1×8

- (a) What is the significance of ψ in Schrödinger equation.
- (b) Predict the direction of the following equilibria

$$2CH_3MgF + HgF_2 \rightleftharpoons (CH_3)_2Hg + 2MgF_2$$

- (c) Write the expression of formal potential of Cu^{2+}/Cu^+ couple in presence of I^- in acid medium.
- (d) What will be the values of l and m_l for p_z and $\mathrm{d} z^2$ orbitals?
- (e) What is the nature of PbNH in liquid ammonia?
- (f) The term symbols for V^{3+} are: 3_F , 3_P , 1_G , 1_D and 1_S . Identify the ground state term.
- (g) Why is NH_4Cl used in ammoniacal medium for the precipitation of Group III A metallic ions as hydroxides?
- (h) From the given Latimer diagram which of the following species will be unstable in aqueous solution?

$$Cu^{2+} \xrightarrow{0.15V} Cu^{+} \xrightarrow{0.52V} Cu^{0}$$

- **2.** (a) Give diagrammatic representation of radial wave function and radial distribution function for 2s and 2p orbitals for Hydrogen atom with interpretations.
 - (b) Arrange the following compounds according to their increasing Lewis basicity towards BMe $_3$, Me $_3$ N, Me $_2$ O, MeF 3+2

Please Turn Over

- **3.** (a) How do the shapes of s and p orbitals can be obtained from angular function for a hydrogen like system?
 - (b) Write the redox reaction involved in the titration of potassium permanganate with oxalic acid in acidic medium and balance by ion-electron method.

 3+2
- **4.** (a) Acetic acid behaves as weak acid in water, strong acid in liquid ammonia but as a base in liquid HF. Justify with reactions.
 - (b) Which electronic configuration is energetically more favourable amongst the following and why? [Ar] $3d^44s^2$, [Ar] $3d^54s^1$ 3+2
- 5. (a) Find out the pH at the equivalence point for the titration of 100 ml 0.1N acetic acid with 0.1N NaOH solution (Given pKa of CH₃COOH = 4.74). Indicate the choice of indicator for this titration.
 - (b) Write the conjugate acids or bases of the following:

6. (a) Construct a Frost diagram for oxygen from the following Latimer diagram in acidic solution.

$$O_2 \xrightarrow{+0.70V} H_2O_2 \xrightarrow{+1.76V} H_2O$$

- (b) Using Pauli exclusion principle find out the maximum capacity of electrons for third quantum shell.
- 7. (a) Cupric ions readily oxidise potassium iodide to iodine in acidic medium. Justify the statement using the following data.

$$E_{Cu^{2+}/Cu^{+}}^{\circ} = 0.15V$$

$$E_{I_2/I^-}^{\circ} = 0.54V$$

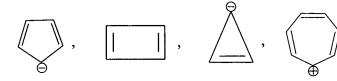
- (b) Orbital angular momentum of an orbital is $\sqrt{6} \frac{h}{2\pi}$. Identify the orbital.
- 8. (a) Explain the acidity order amongst H₃PO₄, H₃PO₃ and H₃PO₂.
 - (b) Calculate the standard potential of the copper-zinc cell from the following redox reactions:

$$Cu^{2+} + 2e \rightleftharpoons Cu(s)$$
 $E^{o} = +0.34V$ $Zn^{2+} + 2e \rightleftharpoons Zn(s)$ $E^{o} = -0.76V$ 3+2

- 9. (a) Elucidate the basic principle for the potentiometric titration between 100ml $0.1N \text{ Fe}^{2+}$ solution and $0.1N \text{ KMnO}_4$ solution at $[H^+] = 1M$.
 - (b) Explain how Aufbau principle is violated in the process of electron filling in lanthanoides. 3+2

Group-B

[Organic Chemistry (1A)]


Answer question no. 10 (compulsory) and any three from the rest (question nos. 11 to 15)

10. (a) Classify the following species as electrophile or nucleophile:

: CCl₂, OCH₃, NH₃, Me₃C

(b) Classify the following molecules as aromatic or antiaromatic:

1+1

11. (a) Cyclooctatetraene is non-planar whereas its dianion is planar. Explain.

- (b) Although N-F bonds are much polar than N-H bonds, NF₃ (0.26 D) has a smaller dipole moment than NH₃ (1.46 D). Explain. 3+2
- 12. (a) Draw the orbital picture of $H_3C-CH=C=O$ and also mention the hybridisation of all the carbon atoms.
 - (b) The boiling point of carboxylic acids are higher than those of alcohols of comparable molecular weights. Explain. 3+2
- 13. (a) Heat of hydrogenation of the following molecules are as follows:

What should be the order of stability of molecules? Explain why.

(b) Dipole moment of 2, 3, 5, 6— tetramethyl -4-nitroaniline is lower than that of 4-nitroaniline. Explain why.

Please Turn Over

(4)

M(1st Sm.)-Chemistry-H/CC-1/(CBCS)

- 14. (a) Draw a properly labelled diagram representing the pi molecular orbitals of 1, 3-butadiene. Indicate the HOMO and LUMO of the molecule in the ground state.
 - (b) Arrange the following compounds in order of increasing rate of thermal decomposition to yield nitrogen and give your reasoning.

 3+2

$$H_3C - N = N - CH_3$$
, $C_6H_5CH_2 - N = N - CH_2C_6H_5$, $H_3C - CH_2 - N = N - CH_2 - CH_3$

- 15. (a) Define addition and substitution reactions with one example for each.
 - (b) Out of cis-1, 2-dibromoethene and trans-1, 2-dibromoethene which one has a higher melting point and why?