(T(3rd Sm.)-Statistics-G/(GE/CC-3)/CBCS

2020

STATISTICS — GENERAL

Paper : GE/CC-3

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any ten* questions :

- (a) Distinguish between a parameter and a statistic.
- (b) What do you mean by a treatment in designs of experiments?
- (c) In ANOVA, write down the assumption on the errors.
- (d) What do you mean by sampling distribution of a statistic?
- (e) If P (Type I error) = 0.2 and P (Type II error) = 0.75, find the power of the test.
- (f) Distinguish between an estimator and an estimate of a parameter.
- (g) What is critical difference in case of a completely randomized design (CRD)?
- (h) What is the degrees of freedom for error in case of two way analysis of variance with one observation per cell?
- (i) Write down an advantage of using an RBD over CRD.
- (j) When is an estimator called BLUE?
- (k) What do you mean by level of significance?
- (1) Write down the $100(1 \alpha)$ % confidence interval for the mean of a normal population with known variance on the basis of a random sample of size *n*.
- (m) What is the variance of a χ^2 -distribution with 5 degree of freedom?

$$\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$$

- (n) Write down the distribution of $\frac{i=1}{\sigma^2}$, where $(X_1, X_2, ..., X_n)$ is a random sample from N(μ, σ^2) distribution.
- (o) Write down the three basic principles involved in design of experiments.

Please Turn Over

1×10

- 2. Answer *any four* questions :
 - (a) Derive the $100(1 \alpha)\%$ confidence limits for σ with known μ when a random sample of size *n* is drawn from N(μ , σ^2) distribution.

(2)

- (b) If X_1 and X_2 are independently distributed Binomial random variables with parameters (n_1, p) and (n_2, p) respectively, obtain the distribution of $X_1 + X_2$.
- (c) Suppose X_1, X_2, X_3 and X_4 are independently and identically distributed standard normal variables.

Write down the distribution of (i) $\sum_{i=1}^{4} X_i^2$ and (ii) $\sqrt{3}X_1 / \sqrt{\sum_{i=2}^{4} X_i^2}$

(d) If T_1 , T_2 , T_3 are independent unbiased estimators of θ and respective variances of them are in the ratio 1 : 2 : 1, which of the following estimators of θ would you prefer?

$$\frac{T_1+T_2}{2}, \ \frac{T_1+T_2+T_3}{3}, \ \frac{2T_1+T_2+T_3}{4}.$$

- (e) Write down the layout of a CRD.
- (f) Derive the distributions of the different sums of squares involved in a two-way classified data with equal observations in each cell.
- 3. Answer any two questions :
 - (a) Describe, in detail, the layout and analysis involved in an RBD. Write the ANOVA table describing the analysis.
 3+5+2
 - (b) Derive a suitable test for testing $H_0: P = P_0$ against $H_1: P \neq P_0$ on the basis of a random sample of size *n*, where *P* is the population proportion of individuals with a certain characteristic. 10
 - (c) If $X \sim Bin(n, p)$, derive the maximum likelihood estimator of p. Also find an unbiased estimator of p^2 . 5+5