T(6th Sm.)-Mathematics-H/DSE-B(2)-1/CBCS

2021

MATHEMATICS — HONOURS

Paper : DSE-B(2)-1

(Point Set Topology)

Full Marks : 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- Answer all the following multiple choice questions. For each question, 1 mark for choosing correct option and 1 mark for justification. 2×10
 - (a) If τ_1 and τ_2 are the topologies on \mathbb{R}^2 generated by the base β_1 of interiors of all circular regions in \mathbb{R}^2 and the base β_2 of interiors of all rectangular regions in \mathbb{R}^2 respectively, then
 - (i) τ_1 is a proper subset of τ_2 (ii) τ_2 is a proper subset of τ_1
 - (iii) $\tau_1 = \tau_2$ (iv) $\tau_1 \cap \tau_2 = \{\mathbb{R}^2, \emptyset\}.$
 - (b) Let (X, τ) be a topological space and A be a non-empty subset of X such that every non-empty open subset of X intersects A. Then which of the following is true?
 - (i) A must be equal to X (ii) A is dense in X
 - (iii) $A = \overline{A}$ (iv) A must be an open set.
 - (c) Let (X, τ) be a topological space and A be a non-empty proper subset of X such that the boundary of A is an empty set. Then which of the following is false?
 - (i) A contains all of its limit points
 - (ii) Every point of A is an interior point
 - (iii) The boundary of $(X \mid A)$ is an empty set
 - (iv) A is closed but may not be an open set.
 - (d) An uncountable set with cofinite topology is
 - (i) both T_1 and first countable space.
 - (ii) both T_2 and first countable space.
 - (iii) a first countable space but not a T_2 space.
 - (iv) neither first countable nor a T_2 space.

T(6th Sm.)-Mathematics-H/DSE-B(2)-1/CBCS

(e) Let $f:(\mathbb{R},\tau_u) \to (\mathbb{R},\tau_u)$ be a continuous map (where τ_u denotes the usual topology on \mathbb{R}) and $Z(f) = \{x \in \mathbb{R}: f(x) = 0\}$. Which of the following is true?

(2)

- (i) Z(f) must be a closed set (ii) Z(f) must be compact
- (iii) Z(f) must be an open set (iv) Z(f) must be connected.
- (f) The number of T_1 topologies that can be defined on a finite set with n elements is
 - (i) 1 (ii) *n*
 - (iii) 2^n (iv) n-1.
- (g) Which of the following statements is not correct for the discrete topology τ_d on \mathbb{R} ?
 - (i) τ_d is the largest topology on \mathbb{R}
 - (ii) (\mathbb{R}, τ_d) is compact
 - (iii) (\mathbb{R} , τ_d) is first countable
 - (iv) For every subset A of \mathbb{R} , $A^{\circ} = \overline{A}$, where A° and \overline{A} denotes the interior and closure of A in (\mathbb{R}, τ_{d}) .
- (h) If $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ is a topology on $X = \{a, b, c\}$, then (X, τ) is
 - (i) compact and Hausdorff (ii) compact but not Hausdorff
 - (iii) only Hausdorff (iv) neither compact nor Hausdorff.
- (i) Which of the following statements is not true?
 - (i) \mathbb{R} with usual topology is homeomorphic with the subspace topology on (-1, 1).
 - (ii) $\left[-1,\frac{1}{2}\right]$ is open in $\left[-1,1\right]$ with respect to the subspace topology from the usual topology on \mathbb{R} .
 - (iii) [-1, 1] is homeomorphic with $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, where both the sets are endowed with the subspace topology from the usual topology on \mathbb{R} and product topology on \mathbb{R}^2 respectively.
 - (iv) [-1, 1] is homeomorphic with [0, 1], where both the sets are endowed with the subspace topology from the usual topology on \mathbb{R} .

(j) Let
$$X = \mathbb{N} \times \mathbb{Q}$$
 with the subspace topology of \mathbb{R}^2 and $P = \left\{ \left(n, \frac{1}{n} \right) : n \in \mathbb{N} \right\}$. Which of the following

statements is true?

- (i) P is closed but not open (ii) P is open but not closed
- (iii) P is both open and closed (iv) P is neither open nor closed.

T(6th Sm.)-Mathematics-H/DSE-B(2)-1/CBCS

Unit - 1

(Marks : 20)

Answer any four questions.

- 2. Let (X, τ) be the topological product of the family of topological spaces $\{(X_i, \tau_i) : i = 1, 2, ..., n\}$ and $p_i : X \to X_i$ denote the *i* th projection map $\forall i = 1, 2, ..., n$. Prove that
 - (a) p_i is an open map for each i
 - (b) τ is the smallest topology on X such that each p_i is continuous. 2+3
- **3.** Prove that a topological invariant is a metric invariant. Is the converse true? Justify. 3+2
- 4. Let (X, d) be a metric space and A be a nonempty subset of X. Prove that the function f_A: (X, τ(d)) → ℝ defined by f_A(x) = inf {d(x, a) : a ∈ A}, ∀x ∈ X is continuous on X (where τ(d) denotes the metric topology on X induced by d). Hence prove that for any A ⊆ X,

$$A = \{x \in X : d(x, A) = 0\} \text{ in } (X, \tau(d))$$
 3+2

- 5. (a) τ is the usual topology on \mathbb{R} and $\tau' = \{A \cup B : A \in \tau, B \subseteq \mathbb{R} \setminus \mathbb{Q}\}$. Prove that τ' is a topology on \mathbb{R} which is finer than τ .
 - (b) Find the interior of the set $\{\sqrt{2} + n : n \in \mathbb{N}\}$ in (\mathbb{R}, τ') . 3+2
- 6. (a) Prove that an isometry $f: (X, d) \to (Y, d')$ is a homeomorphism from $(X, \tau(d))$ to $(Y, \tau(d'))$. (Here (X, d) and (Y, d') are two metric spaces and $\tau(d)$ and $\tau(d')$ are the topologies generated by the corresponding metric on X and Y respectively.)
 - (b) If $\{A_{\alpha} : \alpha \in \Lambda\}$ is an infinite family of subsets in any topological space (X, τ) , then the equality $\overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}} = \bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}}$ is always true—correct or justify. 3+2
- 7. (X, τ) is a topological space and D is a dense subset of X.
 - (a) Prove that, for an open subset Y of X, $D \cap Y$ is dense in the subspace topology on Y. Is the result true if Y is not open? Justify.
 - (b) Prove that for a continuous surjection f: (X, τ) → (Z, τ') the set f(D) is dense in Z, where (Z, τ') is any topological space.
- 8. If (X, τ) is a second countable space and B is a base for τ , then prove that there exists a countable subfamily D of B such that D is a base for τ . 5

(4)

Unit - 2

(Marks : 10)

Answer any two questions.

- 9. Let $f: X \to Y$ be any function from a topological space X into a topological space Y. If f is continuous, then prove that the graph of f defined by $G(f) = \{(X, f(x)) : x \in X\}$ is homeomorphic to X. 5
- 10. (a) Prove that a topological space (X, τ) is Hausdorff if the diagonal $\{(x, x) : x \in X\}$ is a closed set in the product space $(X \times X, \tau \times \tau)$.
 - (b) Prove or disprove : In a topological space (X, τ) , if every covergent sequence in X has unique limit then X is a T_2 space. 3+2
- 11. (a) $f: (X, \tau) \to (Y, \tau')$ is an open, continuous, surjection and (X, τ) is a first countable space. Prove that Y is first countable.
 - (b) Consider a topology η on \mathbb{R} given by $\eta = \{U \subseteq \mathbb{R} : \text{ either } 1 \notin U \text{ or } \mathbb{R} \setminus U \text{ is finite} \}$. Prove that (\mathbb{R}, η) is not first countable. 3+2
- 12. (a) $f: (X, \tau) \to (Y, \tau')$ is a continuous and injective, where Y is a Hausdorff space. Show that X is Hausdorff.
 - (b) If (X, τ) is a T_1 space and every intersection of open sets is open in (X, τ) , prove that τ is the discrete topology on *X*. 3+2

Unit - 3

(Marks : 15)

Answer any three questions.

- 13. (a) Prove or disprove : The intersection of any family of compact subsets of a space is compact.
 - (b) Prove or disprove : (\mathbb{R}, τ_c) is a compact space, where $\tau_c = \{U \subseteq \mathbb{R} : \text{ either } \mathbb{R} \setminus U \text{ is countable or } \mathbb{R}\}$ 3+2
- 14. (a) A and B are two compact subsets of a space (X, τ) such that each point of A is strongly separated from each point of B. Prove that A and B are strongly separated in X.
 - (b) 'There does not exist a continuous map from [2, 5] onto (1, 4), where [2, 5] and (1, 4) are endowed with the subspace topology of the usual topology on ℝ'— Justify the statement. 3+2
- **15.** (a) In a topological space (X, τ) , E is a connected subset of X so that $E = A \cup B \cup C$, where A and B are separated and C is connected. Show that $A \cup C$ is connected.
 - (b) Consider \mathbb{R} endowed with the usual topology, $f: \mathbb{R} \to \mathbb{R}$ is any function such that $f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$ and $f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}$. Show that f is not a continuous function. 3+2

- 16. (a) If every real valued continuous function defined on a topological space X takes on every value between any two values that it assumes then prove that X is connected.
 - (b) Prove that a continuous mapping from a connected space to the real line having only rational values is constant. 3+2
- 17. (a) If A is a connected subset of a metric space (X, d) consisting of atleast two points then prove that A is uncountable.
 - (b) Find all components of the set of rational numbers endowed with the subspace topology from the usual topology of ℝ.
 3+2