2021

MATHEMATICS - HONOURS

Paper : DSE-A(2)-1

(Differential Geometry)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

[The symbols used have usual meanings]

1. Answer all the following multiple choice questions. For each question, 1 mark for choosing correct option and 1 mark for correct justification.
2×10
(a) The number of independent components of Christoffel's symbols are
(i) $n(n+1)$
(ii) $n(n-1)$
(iii) $\frac{n^{2}(n+1)}{2}$
(iv) 0 .
(b) The value of g^{13} and g^{23} when the metric is given by $d s^{2}=2\left(d x^{1}\right)^{2}+3\left(d x^{2}\right)^{2}+4\left(d x^{3}\right)^{2}-2 d x^{2} d x^{3}-4 d x^{1} d x^{3}-6 d x^{1} d x^{2}$ in the Riemannian space V_{3} are
(i) $-\frac{7}{19}$ and $-\frac{4}{19}$
(ii) $-\frac{7}{19}$ and $-\frac{2}{19}$
(iii) $-\frac{5}{19}$ and $-\frac{4}{19}$
(iv) $-\frac{9}{38}$ and $-\frac{4}{19}$.
(c) Let $d s^{2}=-\left(d x^{1}\right)^{2}-\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}+c^{4}\left(d x^{4}\right)^{2}$ be a metric defined on the Riemannian space V_{4}. Then the angle between two contravariant vectors $(1,0,0,1 / c)$ and $(-1,-1,0,1 / \mathrm{c})$ is
(i) $\theta=\cos ^{-1}\left(\frac{c^{2}+1}{\sqrt{c^{2}-1} \sqrt{c^{2}-2}}\right)$
(ii) $\theta=\cos ^{-1}\left(\frac{c^{2}-1}{\sqrt{c^{2}+1} \sqrt{c^{2}-2}}\right)$
(iii) $\theta=\cos ^{-1}\left(\frac{c^{2}+2}{\sqrt{c^{2}-1} \sqrt{c^{2}-2}}\right)$
(iv) $\theta=\cos ^{-1}\left(\frac{c^{2}+1}{\sqrt{c^{2}-1} \sqrt{c^{2}+2}}\right)$.
(d) The intrinsic derivative of the fundamental tensor $g_{i j}$ is
(i) 1
(ii) 0
(iii) -1
(iv) 2 .
(e) The necessary and sufficient condition for a given curve to be a helix is that the ratio of the curvature to the torsion is always
(i) $(+) v e$
(ii) 0
(iii) $(-) v e$
(iv) Constant.
(f) If A_{i} is a covariant vector, then $\frac{\partial A_{i}}{\partial x^{j}}$ is
(i) a $(0,2)$ tensor
(ii) a $(2,0)$ tensor
(iii) an $(1,1)$ tensor
(iv) not a tensor.
(g) If $g_{i j}$ is the fundamental metric tensor of type $(0,2)$ in a Riemannian space V_{n}. If A^{i} and B^{i} are two non-null contravariant vectors such that $g_{i j} u^{i} u^{j}=g_{i j} v^{i} v^{j}$ where $u^{i}=A^{i}+B^{i}$ and $v^{i}=A^{i}-B^{i}$, then
(i) A^{i} and B^{i} are parallel
(ii) A^{i} and B^{i} are orthogonal
(iii) A^{i} and B^{i} are equal
(iv) $g_{i j} A^{i} B^{j}=1$.
(h) If $A_{i j}$ is a symmetric tensor such that $A_{i j, k}=A_{i k, j}\left(A_{i j, k}\right.$ denotes the covariant derivatives of $A_{i j}$ with respect to x^{k}), then $A_{i j, k}$ is
(i) a symmetric tensor of type $(0,3)$
(ii) a symmetric tensor of type $(1,2)$
(iii) a symmetric tensor of type $(2,1)$
(iv) a skew-symmetric tensor of type (1, 2).
(i) The surface is developable if and only if
(i) $L N-M^{2}>0$
(ii) $L N-M^{2}<0$
(iii) $L N-M^{2}=0$
(iv) $L N-M^{2}$ is undefined.
(j) A surface M is a minimal surface if
(i) $k_{1} k_{2}=0$
(ii) $k_{1}+k_{2}=0$
(iii) $K=0$
(iv) $k_{1}=k_{2}$.
where k_{1}, k_{2} are principal curvatures and K is the Gaussian curvature.

Unit - 1

Answer any one question. 5×1
2. Prove that the components of a tensor of type $(0,2)$ can be uniquely expressed as the sum of a symmetric tensor and a skew symmetric tensor of the same type.
3. Find the Christoffel symbols $\left\{\begin{array}{c}2 \\ 1\end{array} 2\right\}$ and $\left.\left\{\begin{array}{c}2 \\ 2\end{array}\right\}\right\}$ in a 3-dimensional Riemannian space in which the line element is given by $d s^{2}=\left(d x^{1}\right)^{2}+\left(x^{1}\right)^{2}\left(d x^{2}\right)^{2}+\left(x^{1} \sin x^{2}\right)^{2}\left(d x^{3}\right)^{2}$.

Unit - 2
 Answer any four questions.

4. Prove that for an Einstein space $V_{n}(n>2)$ the scalar curvature is constant.
5. Find the curvature and torsion of the curve $\vec{r}=\left(\tan ^{-1} s\right) \hat{i}+\frac{1}{\sqrt{2}} \log \left(s^{2}+1\right) \hat{j}+\left(s-\tan ^{-1} s\right) \hat{k}$.
6. Prove that necessary and sufficient condition for a vector field A to be parallel along the curve $\sigma: x^{i}=x^{i}(t), t_{1} \leq t \leq t_{2}, i=1,2,3$ is that

$$
\frac{d A^{i}}{d t}+\left\{\begin{array}{c}
i \\
\alpha \beta
\end{array}\right\} A^{\alpha} \frac{d x^{\beta}}{d t}=0
$$

where $A^{i}, i=1,2,3$ are the components of A.
7. Find curvature and torsion at the point P of the curve σ, defined in cylindrical coordinates by equations

$$
x^{1}=a, x^{2}=\theta(s), x^{3}=0
$$

where the line element is given by $d s^{2}=\left(d x^{1}\right)^{2}+\left(x^{1}\right)^{2}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}$.
8. Prove that there are points on the cubic $x=a t^{3}+b, y=3 c t^{2}+3 d t, z=3 e t+f$ such that the osculating plane passes through the origin and that the points lie on the plane $3 c e x+a f y=0$.
9. If θ is the angle between the parametric curves, then show that $\cos \theta=\frac{a_{12}}{\sqrt{a_{11} a_{22}}}$.
10. Using the relation $K=\frac{b}{a}$, where $a=\operatorname{det}\left(a_{\alpha \beta}\right), b=\operatorname{det}\left(b_{\alpha \beta}\right)$, derive the relation $K=\operatorname{det}\left(b_{\beta}^{\alpha}\right)$.

$$
\text { Unit - } 3
$$

Answer any four questions.

11. Find the differential equations of the geodesic for the metric $d s^{2}=(d u)^{2}+(\sin u)^{2}(d v)^{2}$.
12. Find the Gaussian curvature for a surface with metric $d s^{2}=a^{2} \sin ^{2} u^{1}\left(d u^{2}\right)^{2}+a^{2}\left(d u^{1}\right)^{2}$.
13. Show that $x^{1}=f_{1}\left(u^{1}\right), x^{2}=f_{2}\left(u^{1}\right), x^{3}=u^{3}$ is developable, where f_{1}, f_{2} are differentiable functions.
14. Prove that along a line of curvature on a surface $\frac{\delta \xi^{r}}{\delta s}+\kappa_{p} \frac{d x^{r}}{d s}=0$. Is the converse true? Justify your answer.
15. Find torsion of a geodesic in terms of principal curvature.
16. Using the Gauss-Bonnet theorem, prove that the Gaussian curvature is identically zero on a surface S if at any point P on S there are two families of geodesic curves in neighbourhood of P intersecting at a constant angle.
17. Prove that geodesic curvatures of u^{1}-curves and u^{2}-curves are respectively

$$
\sigma_{1}=\sqrt{\frac{a}{\left(a_{11}\right)^{3}}}\left\{\begin{array}{c}
2 \\
11
\end{array}\right\} \text { and } \sigma_{2}=-\sqrt{\frac{a}{\left(a_{22}\right)^{3}}}\left\{\begin{array}{c}
1 \\
2
\end{array} 2\right\}
$$

where $a=\operatorname{det}\left(a_{\alpha \beta}\right)$.

