2021

MATHEMATICS - HONOURS

Paper: CC-13

(Metric Space and Complex Analysis)

Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
$[\mathbb{N}, \mathbb{R}, \mathbb{Q}, \mathbb{C}$ denote the set of all natural, real, rational and complex numbers respectively.]
(Notations and symbols have their usual meanings).

1. Answer all the following multiple choice questions. For each question $\mathbf{1}$ mark for choosing correct option and $\mathbf{1}$ mark for justification.
(a) Let (X, d) be a metric space and $A, B \subseteq X$. Choose the statement which is not true.
(i) $\overline{(A \cup B)}=\bar{A} \cup \bar{B}$
(ii) $A^{\circ} \cup B^{\mathrm{o}} \subseteq(A \cup B)^{\mathrm{o}}$
(iii) $\partial(A \cap B)=\partial A \cap \partial B$
(iv) $d(A, B)=d(\bar{A}, \bar{B})$.
[∂A denotes boundary of $A, d(A, B)$ denotes the distance between A, B.]
(b) Two metrices d and d^{*} are defined on \mathbb{R}^{2} as follows :

$$
\begin{aligned}
& \text { For all } \hat{x}=\left(x_{1}, y_{1}\right), \hat{y}=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} \\
& d(\hat{x}, \hat{y})=\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]^{1 / 2} \\
& d^{*}(\hat{x}, \hat{y})=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\} \text {. }
\end{aligned}
$$

Then which of the following is true?
(i) $d=d^{*}$
(ii) d and d^{*} are equivalent
(iii) d and d^{*} are not equivalent
(iv) $\left(\mathbb{R}^{2}, d^{*}\right)$ is a submetric space of $\left(\mathbb{R}^{2}, d\right)$.
(c) Let $A=\{(x, y): x, y \in \mathbb{R}, x \notin \mathbb{Q}$ or $y \notin \mathbb{Q}\}$. Then which of the following is true with usual metric on \mathbb{R}^{2} ?
(i) A is open but not compact in \mathbb{R}^{2}
(ii) A is not open but compact in \mathbb{R}^{2}
(iii) A is neither open nor compact in \mathbb{R}^{2}
(iv) A is both open and compact in \mathbb{R}^{2}.
(d) Consider \mathbb{R}^{2} with usual metric.

Let $A=\left\{\left(\frac{1}{n}, 0\right) \in \mathbb{R}^{2}: n \in \mathbb{N}\right\} \cup\{(0,0)\}$ and
$B=\left\{\left(x, \sin \frac{1}{x}\right) \in \mathbb{R}^{2}: 0<x<1\right\}$. Then which of the following is correct?
(i) Both A, B are connected
(ii) A is connected, B is disconnected
(iii) B is connected, A is disconnected
(iv) Both A, B are disconnected.
(e) Let A be a subset of a metric space (X, d). Then $\{x \in X: d(x, A)=0\}$ is:
(i) equal to \bar{A} and is compact
(ii) equal to \bar{A} but not necessarily compact
(iii) equal to A
(iv) equal to $\{0\}$.
(f) Let $T(z)=\frac{a z+b}{c z+d}$ be a bilinear transformation. Then ∞ is a fixed point of T if and only if
(i) $a=0$
(ii) $b=0$
(iii) $c=0$
(iv) $d=0$.
(g) Let $f(z)=|z|^{2} ; z \in \mathbb{C}$. Then f is
(i) continuous everywhere but differentiable nowhere
(ii) differentiable only at $z=0$
(iii) continuous nowhere
(iv) differentiable everywhere.
(h) The radius of convergence of the power series $\sum(4+3 i)^{n} z^{n}$ is
(i) 5
(ii) $\frac{1}{5}$
(iii) 4
(iv) $\frac{1}{4}$.
(i) Value of the integral $\int_{C} \sec (z) d z$, where C is the unit circle with centre at origin, is:
(i) 2
(ii) 0
(iii) 1
(iv) -5 .
(j) Let $I=\int_{\gamma} z^{2} d z$, where γ is along the real-axis from 0 to 1 and then along the line parallel to the imaginary-axis from 1 to $1+2 i$. Which of the followings is true?
(i) $I=-\frac{11+2 i}{3}$
(ii) $I=\frac{11-2 i}{3}$
(iii) $I=\frac{-11+2 i}{3}$
(iv) $I=\frac{11+2 i}{3}$.

Unit - 1

(Metric Space)

Answer any five questions.

2. Let \mathbb{R}_{∞} be the extended set of real numbers. The function d defined by $d(x, y)=|f(x)-f(y)|, \forall x, y \in \mathbb{R}_{\infty}$, where $f(x)$ is given by

$$
f(x)=\left\{\begin{aligned}
\frac{x}{1+|x|}, & \text { when } \quad-\infty<x<\infty \\
1, & \text { when } \quad x=\infty \\
-1, & \text { when } \quad x=-\infty
\end{aligned}\right.
$$

Show that $\left(\mathbb{R}_{\infty}, d\right)$ is a bounded metric space.
3. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences in a metric space (X, d). Write

$$
x_{n}=d\left(a_{n}, b_{n}\right) \forall n \in \mathbb{N}
$$

If $\left\{a_{n}\right\}$ is a Cauchy sequence and $x_{n} \rightarrow 0$ with respect to usual metric on \mathbb{R}, then prove that $\left\{b_{n}\right\}$ is a Cauchy sequence. Is this true if $\left\{x_{n}\right\}$ converges to nonzero limit? Justify.
4. Let (X, d) be a complete metric space and $\left\{F_{n}\right\}$ be a decreasing sequence of nonempty closed subsets of X such that diam $\left(F_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then show that the intersection $\bigcap_{n=1}^{\infty} F_{n}$ contains exactly one point. If $\operatorname{diam}\left(F_{n}\right) \nrightarrow 0$ as $n \rightarrow \infty$, what would happen? Justify your answer.
5. Prove or disprove : Let (X, d) be a metric space and A be a closed and bounded subset of X. Then A is compact.
6. (a) Prove that a metric space (X, d) having the property that every continuous map $f: X \rightarrow X$ has a fixed point, is connected.
(b) Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a contraction on X. Then for $x \in X$, show that the sequence $\left\{T^{n} x\right\}$ is a convergent sequence.
7. (a) Prove that the space \mathbb{Q} of rational numbers with subspace metric of the usual metric of \mathbb{R} is not connected.
(b) Prove that $(a, b]$ is connected with usual metric of \mathbb{R}.
8. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be two metric spaces and $f:\left(X, d_{1}\right) \rightarrow\left(Y, d_{2}\right)$ be uniformly continuous. Show that if $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, d_{1}\right)$ then so is $\left\{f\left(x_{n}\right)\right\}$ in $\left(Y, d_{2}\right)$. Is it true if f is only continuous? Justify.
9. Let (X, d) be a complete metric space and let $f: X \rightarrow X$ be a contraction mapping with Lipschitz constant $t(0<t<1)$. If $x_{0} \in X$ is unique fixed point of f, show that

$$
\begin{equation*}
d\left(x, x_{0}\right) \leq \frac{1}{1-t} d(x, f(x)), \forall x \in X \tag{5}
\end{equation*}
$$

Unit - 2
 (Complex Analysis)

Answer any four questions.
10. (a) Let z_{1} and z_{2} be the images in the complex plane of two diametrically opposite points on the Riemann sphere under stereographic projection. Then show that

$$
z_{1} \overline{z_{2}}=-1
$$

(b) Prove or disprove : The image of the circle $|z|=r(r \neq 1)$ under the transformation $w=z+\frac{1}{z}$ is an ellipse.
$2+3$
11. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $f(z)=\frac{(\bar{z})^{2}}{z}$ for $z \neq 0$ and $f(0)=0$. Show that the Cauchy Riemann equations are satisfied at $z=0$, but the derivative of f fails to exist there.
12. (a) If f is analytic function of $z=x+i y \in \mathbb{C}$ and $\bar{z}=x-i y$, then show that $\frac{\partial f}{\partial \bar{z}}=0$.
(b) Let f be analytic on a region G. If f assumes only real values on G, then show that f is a constant function.
13. Let f be an analytic function in a region G. Show that $\operatorname{Re}(f)$ satisfies the following equation :

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}=0 \tag{5}
\end{equation*}
$$

14. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad$ be a power series with radius of convergence $R>0$. Show that f is differentiable on $|Z|<R$. Show that $\frac{d f}{d z}=\sum_{n=1}^{\infty} n a_{n} z^{n-1} \quad$ and it has radius of convergence R.
15. (a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$, where $a_{n}=\frac{e^{i n \pi}}{n}$.
(b) Let $f(z)=\bar{z}$ and γ is the semicircle from 1 to -1 passing through i. Evaluate $\int_{\gamma} f(z) d z . \quad 2+3$
16. (a) Evaluate : $\int_{|z|=2} \frac{e^{z}+z^{2}}{z-1} d z$
(b) Show that $\left|\int_{\gamma} \frac{d z}{z^{2}+4}\right| \leq \frac{\pi R}{\left(R^{2}-4\right)}$, where $\gamma(t)=\operatorname{Re}^{i t}$ for $0 \leq t \leq \pi$ and $R>2$.
