2021

MATHEMATICS - HONOURS

Paper : CC-8

(Riemann Integration and Series of Functions)

Full Marks: 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
\mathbb{N}, \mathbb{R} denote the sets of natural numbers and real numbers respectively.

1. Answer all the following multiple choice questions having only one correct option. Choose the correct option and justify :
$(1+1) \times 10$
(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and P, Q are partitions of $[a, b]$ such that P is a refinement of Q. Then,
(i) $L(P, f) \leq L(Q, f)$
(ii) $L(P, f) \leq U(Q, f)$
(iii) $U(P, f) \leq L(Q, f)$
(iv) $U(P, f) \geq U(Q, f)$.
(b) Let $f:[0,3] \rightarrow \mathbb{R}$ be defined by $f(x)=[x]$, where $[x]$ denotes the greatest integer not exceeding x. Then,
(i) f is not Riemann integrable on $[0,3]$.
(ii) f is Riemann integrable on $[0,3]$ and $\int_{0}^{3} f=0$.
(iii) f is Riemann integrable on $[0,3]$ and $\int_{0}^{3} f=2$.
(iv) f is Riemann integrable on $[0,3]$ and $\int_{0}^{3} f=3$.
(c) Identify the incorrect statement:
(i) Any subset of a negligible set is negligible.
(ii) Any enumerable set of real numbers is negligible.
(iii) Countable union of negligible sets is negligible.
(iv) If the set of points of discontinuity of a real-valued function is negligible, then the function is monotonic.
(d) Let $f:[0,4] \rightarrow \mathbb{R}$ be defined by $f(x)=x^{4}-4 x^{3}+10$ and $P=\{1,2,3,4\}$. Then,
(i) $U(P, f)=-40$
(ii) $L(P, f)=11$
(iii) $U(P, f)=40$
(iv) $L(P, f)=-40$.
(e) $\int_{0}^{\infty} \sqrt{t} e^{-t^{3}} d t$ is equal to
(i) $\frac{\sqrt{\pi}}{3}$
(ii) $\frac{\sqrt{\pi}}{2}$
(iii) $\frac{\sqrt{\pi}}{4}$
(iv) $2 \sqrt{\pi}$.
(f) The improper integral $\int_{1}^{\infty} \frac{d x}{x^{\mu-2}}$ is convergent if and only if
(i) $\mu=1$
(ii) $\mu<2$
(iii) $\mu \geq 2$
(iv) $\mu>3$.
(g) The radius of convergence of the power series $x+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{3}}+\frac{x^{4}}{4^{4}}+\ldots .$. is
(i) e
(ii) $\frac{1}{e}$
(iii) ∞
(iv) 0 .
(h) The limit function of $\left\{\frac{x^{n}}{1+x^{n}}\right\}_{n}$ on $[0,2]$ is
(i) monotonically decreasing
(ii) monotonically increasing
(iii) continuous
(iv) not monotonic.
(i) Given that the interval of uniform convergence of a power series is $(-4,2)$, for suitable a_{n}, which could be power series?
(i) $\sum_{n=0}^{\infty} a_{n}(X+3)^{n}$
(ii) $\sum_{n=0}^{\infty} a_{n}(X-3)^{n}$
(iii) $\sum_{n=0}^{\infty} a_{n}(X+1)^{n}$
(iv) $\sum_{n=0}^{\infty} a_{n}(X-1)^{n}$.
(j) The sum of the Fourier series for the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{l}-1,-\pi \leq x<0 \\ -2,0 \leq x \leq \pi\end{array}\right.$ at $x=\pi$ is
(i) $-\frac{1}{2}$
(ii) -2
(iii) $-\frac{3}{2}$
(iv) $\frac{3}{2}$.
2. Answer any three questions:
(a) State and prove a necessary and sufficient condition for Riemann integrability of a bounded function f defined on $[a, b]$.
(b) If a real-valued function f is Riemann integrable on $[a, b]$ then prove that $|f|$ is also Riemann integrable on $[a, b]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.
(c) (i) If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function, such that $f(x) \geq 0$ on $[a, b]$ and $\int_{a}^{b} f=0$, then prove that f is identically zero on $[a, b]$.
(ii) Prove, with justification, $\frac{\pi^{2}}{9} \leq \int_{\pi / 6}^{\pi / 2} \frac{x}{\sin x} d x \leq \frac{2 \pi^{2}}{9}$.
(d) Let $f(t)=\lim _{n \rightarrow \infty} \frac{t^{n}+1}{t^{n}+3}, 0 \leq t \leq 2$ and $F(x)=\int_{0}^{x} f(t) d t, x \geq 0$. Prove that F is continuous at ' 1 ' but is not derivable there.
(e) (i) Prove or disprove : If $f:[a, b] \rightarrow \mathbb{R}$ has a primitive on $[a, b]$, then the set of points of discontinuity of f in $[a, b]$ is a negligible set.
(ii) Identify the set of points of discontinuity of the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\frac{1}{3^{n}}, & \text { when } \frac{1}{3^{n+1}}<x \leq \frac{1}{3^{n}}(n=0,1,2, \ldots . .) \tag{2+1}\\ 0, & \text { when } x=0\end{cases}
$$

Hence, tell whether f is Riemann integrable on $[0,1]$.
3. Answer any two questions:
(a) Let the functions f, g be positive-valued, bounded and Riemann integrable over $[a, X]$ for every $X>a$ such that $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$. If $\int_{a}^{\infty} f$ is convergent prove that $\int_{a}^{\infty} g$ is also convergent. Is the converse true? Justify your answer.
(b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x$ is convergent but $\int_{0}^{\infty} \frac{|\sin x|}{x} d x$ is not convergent.
(c) Prove that $B(m, n)=\int_{0}^{1} \frac{t^{m-1}+t^{n-1}}{(1+t)^{m+n}} d t$ where $m>0, n>0$.
(d) (i) Examine the convergence of $\int_{1}^{2} \frac{\log x}{\sqrt{2-x}} d x$.
(ii) Examine the absolute convergence of $\int_{0}^{\infty} \frac{\cos x d x}{\sqrt{1+x^{3}}}$.
4. Answer any four questions:
(a) Let $\left\{f_{n}\right\}_{n}$ be a sequence of Riemann integrable functions defined on $[a, b]$ and $\left\{f_{n}\right\}_{n}$ have a uniform limit f on $[a, b]$. Prove that f is Riemann integrable over $[a, b]$.
Moreover, show that $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x$.
(b) Show that the sequence $\left\{\frac{n x}{1+n^{2} x^{2}}\right\}_{n}$ of continuous functions defined on $[0,1]$ has a continuous limit function, although the convergence is not uniform.
(c) $\sum_{n} M_{n}$ is a convergent infinite series of positive real numbers such that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in S$ and for every $n \in \mathbb{N}$. Prove that $\sum_{n} f_{n}$ is uniformly convergent on S.

Hence, prove that $\sum_{n=1}^{\infty} \frac{\cos ^{3} n x}{4 n^{2}+1}$ is uniformly convergent on $[0, \infty)$.
(d) Examine term-by-term differentiability of $\sum_{n=1}^{\infty} \frac{1}{n^{3}+n^{4} x^{2}}$ on \mathbb{R}.
(e) Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series and $\mu=\overline{\lim }\left|a_{n}\right|^{\frac{1}{n}}$. If $0<\mu<\infty$, prove that the series is absolutely convergent for $|x|<\frac{1}{\mu}$ and is not convergent for $|x|>\frac{1}{\mu}$.
(f) Assuming the power series for $(1+x)^{-1}$ as $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots . .(-1<x<1)$, obtain the power series expansion of $\log _{e}(1+x)$ and find the region of convergence of the power series of $\log _{e}(1+x)$.
(g) Find the Fourier series of the function $f(x)=\left\{\begin{array}{rc}-1, & -\pi \leq x \leq 0 \\ 1, & 0<x \leq \pi\end{array}\right.$. Also find the sum of the series at $x=0$ and $x=\frac{\pi}{2}$.

