2021

MATHEMATICS - HONOURS

Paper : CC-4

(Group Theory - I)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer all the following multiple choice questions. Each question carries $\mathbf{2}$ marks, $\mathbf{1}$ mark for choosing correct option and $\mathbf{1}$ mark for justification.
2×10
(a) Which of the following groupoids is not semigroup?
(i) $(N, o), a o b=a b \forall a, b \in N$
(ii) $(Z, o), a o b=a+b+2 \forall a, b \in Z$
(iii) $(Z, o), a o b=a-b, a, b \in Z$
(iv) $(Z, o), a o b=a+b+a b \forall a, b \in Z$
(b) Let H and K be two subgroups of a group (G, \bullet) such that $o(H)=13$ and $o(K)=7$, then $o(H K)$ is
(i) 1
(ii) 91
(iii) 13
(iv) 7
(c) Let (G, \bullet) be a cyclic group of order 24. The total number of group homomorphism of G onto itself is
(i) 7
(ii) 8
(iii) 17
(iv) 24
(d) In the permutation group $S_{n}(n \geq 5)$, if H is the smallest subgroup containing all the 3-cycles then which of the following is true?
(i) $H=S_{n}$
(ii) $H=A_{n}$
(iii) H is abelian
(iv) $o(H)=2$
(e) Let $\phi:(R,+) \rightarrow(R-\{0\}$, o) be a homomorphism and $\phi(2)=3$. Then $\phi(-6)$ is
(i) $\frac{1}{3}$
(ii) $\frac{1}{27}$
(iii) -18
(iv) $\frac{1}{9}$
(f) Choose the wrong statement among the following:
(i) If in a group $(G, \bullet)(a b)^{2}=b^{2} a^{2}$ for all $a, b \in G$, then G is abelian.
(ii) If (G, \bullet) is a finite group, then there exists $N \in \mathbb{N}$ such that $a^{N}=e$, for all $a \in G$.
(iii) A group of five elements is always abelian.
(iv) If (G, \bullet) is a group of even order, then there exists an element $a \neq e$ such that $a^{2}=e$.
(g) If $o(a)=n$ and k divides n, which of the following is always true?
(i) $o\left(a^{n / k}\right)=k$
(ii) $o\left(a^{n / k}\right)=n$
(iii) $o\left(a^{n / k}\right)=n / k$
(iv) $o\left(a^{n / k}\right)=k . n$
(h) The value of (1234) o (2 3546) o (345 6) is
(i) (612435)
(ii) $\left(\begin{array}{ll}6 & 5\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$
(iii) $(12)\left(\begin{array}{ll}3 & 4 \\ 5\end{array}\right)$
(iv) $\left(\begin{array}{lll}3 & 5 & 5 \\ \hline\end{array}\right)$
(i) Show that $f:(\mathbb{C},+) \rightarrow(\mathbb{R},+)$ defined by $f(a+i b)=a$, for all $a+i b \in \mathbb{C}$, is onto homomorphism. Then $\operatorname{ker}(f)$ is
(i) $\{0\}$
(ii) \mathbb{R}
(iii) $i \mathbb{R}=\{i b: b \in \mathbb{R}\}$
(iv) \mathbb{C}
(j) Let $\mathrm{G}=(\mathbb{Z},+), \mathrm{H}=(24 \mathbb{Z},+)$. Then the order of $8+24 \mathbb{Z}$ in G / H is
(i) 8
(ii) 3
(iii) 16
(iv) 24

Unit - I

2. Answer any two questions :
(a) (i) Prove that the set of all odd integers forms a commutative group with respect to '*' defined by $a * b=a+b-1 \forall a, b \in D$
(ii) Prove or disprove : "If H and K are two subgroups of a group G then $H K$ is also a subgroup of G ".
(b) (i) If S is a finite semigroup then show that there exists an element $a \in S$ such that $a^{2}=a$.
(ii) Let G be a multiplicative group and let for $a, b \in G, a^{4}=e$ and $a b=b a^{2}$ where e is the identity element of G. Prove that $a=e$.
(c) Give an example of a non-abelian group of order $2 n$. If a group (G, \bullet) has no non-trivial subgroups, show that G must be finite and of prime order.
(d) If H is a subgroup of (G, \bullet), let $N(H)=\left\{a \in G: a H a^{-1}=H\right\}$. Prove that
(i) $N(H)$ is a subgroup of G.
(ii) $H \subset N(H)$.

Unit - II

3. Answer any four questions:
(a) (i) Show that the 8th roots of unity form a cyclic group. Find all generators of the group.
(ii) Give an example of an infinite group, every element of which is of finite order.
(b) (i) Let G be the set of all permutations of the positive integers. Let H be the subset of elements of G that can be expressed as a product of a finite number of cycles. Prove that H is a subgroup of G.
(ii) Let α and β belongs to S_{n}. Prove that $\beta \alpha \beta^{-1}$ and α are both even or both odd. $3+2$
(c) (i) If H and K be two subgroups of a group G, then prove that for any $a, b \in G$, either $H a \cap K b=\phi$ or $H a \cap K b=(H \cap K) c$ for some $c \in G$.
(ii) Express the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 8 & 5 & 6 & 4 & 7 & 1\end{array}\right)$ on S_{8} as a product of transpositions. $3+2$
(d) (i) Let (G, \bullet) be an infinite cyclic group generated by a. Prove that a and a^{-1} are the only generators of the group G.
(ii) Let G be a cyclic group of order 30 generated by a. Find the order of cyclic group generated by a^{18}.
$3+2$
(e) Define cosets of a subgroup H in a group (G, \bullet). The set $H=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ is a subgroup of \mathbb{Z}_{12}. Find all cosets of H.
(f) Prove that every non-commutative group (G, \bullet) of order 10 must have a subgroup H of order 5. Also, prove that $x^{2} \in H$ for all $x \in G$.
(g) (i) Let $a(\neq 0), b \in \mathbb{R}$. Define a mapping $f_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{a, b}(x)=a x+b$ for all $x \in \mathbb{R}$. Prove that $f_{a, b}$ is a permutation on \mathbb{R}.
(ii) Find the largest order of an element in the group S_{12}.

Unit - III

4. Answer any three questions:
(a) (i) Let H be a normal subgroup of a group (G, \bullet) and $[G: H]=m$. Prove that $a^{m} \in H$ for all $a \in G$.
(ii) If H is a subgroup of (G, \bullet) such that $x^{2} \in H$ for every $x \in G$, then prove that H is a normal subgroup of G.
$3+2$
(b) Let (G, \bullet) be a group and the mapping $f: G \rightarrow G$ be defined by $f(g)=g^{-1}, g \in G$. Show that f is an isomorphim if and only if G is abelian.
(c) (i) Prove that the quotient of an abelian group is abelian. Can the quotient of a non-abelian group be abelian? Justify.
(ii) Consider the group $G=\{1,-1, i,-i\}$ with respect to usual multiplication of complex numbers and the group $H=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ with respect to usual multiplication defined on \mathbb{Z}_{8}. Is the group G isomorphic to the group H ? Justify your answer.
(d) Define normal subgroups of a group. Prove that a group of prime order is simple.
(e) Let $G L_{n}(\mathbb{R})$ be the general linear group over \mathbb{R} and $S L_{n}(\mathbb{R})$ be the special linear group over \mathbb{R}. Prove that $G L_{n}(\mathbb{R}) / S L_{n}(\mathbb{R}) \cong \mathbb{R}^{*}$, where there \mathbb{R}^{*} is the group under usual multiplication of real numbers.
