2021

MATHEMATICS - HONOURS

Paper: CC-3

(Real Analysis)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
$\mathbb{N}, \mathbb{R}, \mathbb{Q}$ denote the set of all natural, real and rational numbers respectively.
Notations and symbols have their usual meanings.

1. Answer all the following multiple choice questions. For each question $\mathbf{1}$ mark for choosing correct option and $\mathbf{1}$ mark for justification.
(a) Let $A=[0,1]$ and $B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Then $A-B$ is
(i) an open set
(ii) a closed set
(iii) neither an open nor a closed set
(iv) a clopen set.
(b) Let $B=\left\{\frac{1}{2 n}+\frac{1}{3 m}: n, m \in \mathbb{N}\right\}$. Then $\frac{1}{3}$ is
(i) a limit point of the set but not an element of the set
(ii) not a limit point of the set but an element of the set
(iii) both an element and a limit point of the set
(iv) neither an element nor a limit point of the set.
(c) If A, B are bounded subsets of \mathbb{R} such that $\operatorname{Sup} A<\operatorname{Inf} B$, then
(i) $A \subset B$
(ii) $A \cap B=\phi$
(iii) $A \cap B \neq \phi$
(iv) $A=B$.
(d) The set $T=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}, x_{2}, \ldots, x_{n} \in\{1,3,5,7,9\}\right\}$ is
(i) empty
(ii) finite
(iii) enumerable
(iv) uncountable.
(e) Which of the following statement is true?
(i) Every bounded set has a limit point
(ii) Every infinite set has a limit point
(iii) Every bounded infinite set has an interior point
(iv) Every uncountable set has a limit point.
(f) If $0<x<2021$, then $\lim _{n \rightarrow \infty}\left(\frac{x^{n+1}+2021^{n+1}}{x^{n}+2021^{n}}\right)$ is
(i) 0
(ii) x
(iii) 2021
(iv) 1 .
(g) If $x_{n}=\frac{1+\sin \left(n^{2}+1\right) \pi+\cos \left(n^{3}-5\right) \pi}{n+1}$, then $\lim \sup x_{n}$ is
(i) 3
(ii) 2
(iii) 1
(iv) 0 .
(h) Identify the incorrect statement from the following:
(i) Every convergent sequence is bounded.
(ii) Every bounded sequence has at least one subsequential limit.
(iii) Unbounded sequence cannot have any subsequential limit.
(iv) Unbounded sequence is never a Cauchy sequence.
(i) Let $\left\{a_{n}\right\}$ be a sequence of positive integers and bounded by a positive integer k. Then the series $\sum_{n=1}^{\infty} \frac{a_{n}}{(k+1)^{n}}$
(i) must be convergent
(ii) must be divergent
(iii) may be convergent
(iv) may be divergent.
(j) The series $\sum_{n=1}^{\infty} \frac{2 n^{2}}{1+n^{2}}$
(i) converges to 0
(ii) converges to 1
(iii) diverges
(iv) converges to 2 .

Unit - 1

Answer any four questions.
2. (a) Let, S, T be two non-empty bounded below sets of real numbers such that $\mathrm{S} \subseteq \mathrm{T}$. Prove that Inf $\mathrm{S} \geq \operatorname{Inf} \mathrm{T}$.
(b) Let A and B be two non-empty bounded subsets of \mathbb{R}.

Prove that $\inf (A \cup B)=$ Minimum $\{\inf A, \inf B\}$.
3. Show that $\mathbb{N} \times \mathbb{N}$ is enumerable. Hence prove that $S=\left\{3^{i 5^{j}}: i, j \in \mathbb{N}\right\}$ is enumerable.
4. (a) Prove or disprove : The complement of any non-empty finite set in \mathbb{R} has at least one limit point in \mathbb{R}.
(b) Find the derived set of $\left\{x \in \mathbb{R}: x^{2}-4 x+3>0\right\}$.
5. (a) Give an example to show that an infinite intersection of open sets is the $\operatorname{set}\left\{\sin \frac{\pi}{7}\right\}$.
(b) Prove or disprove : Bolzano-Weierstrass theorem cannot be verified with this set $\left\{n^{(-1)^{n}}: n \in \mathbb{N}\right\}$.
(c) Prove or disprove : The set of all irrational numbers in $[\sqrt{2}, \sqrt{3}]$ is uncountable. $2+2+1$
6. Prove that no non-empty proper subset of \mathbb{R} is both open and closed.
7. (a) Prove or disprove : If A is a non-empty open set of real numbers, then A is uncountable.
(b) Prove or disprove : $[0,3]-\bigcup_{n=1}^{\infty}\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)$ is a closed set.
8. (a) If $a>0$, show that the set $\{a q: q \in \mathbb{Q}\}$ is dense in \mathbb{R}.
(b) Check whether the set $\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\left\{-\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$ is a neighbourhood of ' 0 ' or not. $3+2$

Unit - 2

Answer any four questions.
9. (a) Prove or disprove : If $\lim x_{n}=0$, then $\lim \frac{y_{n}}{n}=0$, where $y_{n}=\sum_{i=1}^{n} x_{i}$.
(b) Prove that the sequence $\left\{x_{n}\right\}$ is bounded, where $x_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}$.
10. (a) Prove or disprove : If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of real numbers such that $\left\{x_{n} y_{n}\right\}$ is convergent, then both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent.
(b) Prove that the sequence $\left\{\sqrt[5]{n^{9}}\right\}$ diverges to $+\infty$.
11. Prove that every Cauchy sequence is convergent. Examine whether $\left\{x_{n}\right\}$ is a Cauchy sequence where $x_{n}=\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2 n} \forall n \in \mathbb{N}$.
12. Prove that every sequence has a monotone subsequence.
13. (a) State Sandwich theorem for three sequences of real numbers. Using it find $\lim _{n \rightarrow \infty} \frac{\cos \left(3 n^{3}+4 n^{2}-7\right)}{n^{4}+1}$.
(b) Prove or disprove : If $\left\{x_{n}\right\}$ is a bounded sequence of real numbers and $\lim y_{n}=0$, then $\lim x_{n} y_{n}=0$. $(1+2)+2$
14. (a) Find the upper and lower limits, if exist, of $\left\{\frac{2 x^{2}}{7}-\left[\frac{2 x^{2}}{7}\right]\right\}$, where $[x]$ is the greatest integer $\leq x$. Is the sequence convergent? Justify.
(b) Prove or disprove : For any two bounded sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ of real numbers, $\underline{\lim }\left(x_{n}+y_{n}\right)=\underline{\lim } x_{n}+\varlimsup y_{n}$.
15. (a) Prove or disprove : If $\left\{I_{n}\right\}$ is a sequence of non-empty open intervals such that $I_{n+1} \subset I_{n}$ and $\lim l\left(I_{n}\right)=0$, where $l\left(I_{n}\right)$ stands for length of I_{n}, then $\bigcap_{n \in \mathbb{N}} I_{n}$ contains exactly one real number.
(b) Show that $\lim _{n \rightarrow \infty} \frac{(n!)^{\frac{1}{n}}}{n}=\frac{1}{e}$.

Unit - 3
Answer any one question.
16. (a) Test the convergence of the infinite series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+2}{2^{n}+7}$.
(b) Prove or disprove : If $\sum u_{n}$ with $u_{n}>0$ is convergent, then $\sum \sqrt{u_{n} u_{n+1}}$ is convergent. $3+2$
17. State Gauss test. Test the convergence of the series :

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{1.3}{2.4}\right)^{2}+\left(\frac{1.3 .5}{2.4 .6}\right)^{2}+\ldots
$$

