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(Notations and symbols have their usual meaning.) 

Group-A 

(Marks-20) 

Section-I 

(Linear Algebra-II) 

Answer any one question. 10×1 

1. (a) Let V and W be vector spaces of finite dimension over a field F and T : V → W be a linear mapping.

Then show that the rank of T = the rank of matrix T. 5

 (b) A mapping F : 3
 →  maps the vector (2, 1, 1), (1, 2, 1) and (1, 1, 2) to (1, 1, –1), (1, –1, 1) and

(1, 0, 0) respectively. Show that F is not an isomorphism. 5   

2. (a) A linear mapping : →	  is defined by ( , , ) = ( + , + , + , + + ), ( , , )ϵ	 .

Find Im T and dimension of Im T. 5

(b) A linear mapping : →  is defined by (0,1,1) = (1,0,1), (1,0,1) = (2,3,4), (1,1,0) = (1,2,3).

Find the matrix of T relative to the order basis (ϵ , ϵ , ϵ ) where ϵ = (1,0,0), ϵ = (0,1,0), ϵ = (0,0,1).

Deduce that T is invertible. 5 

Section-II 

(Modern Algebra-III) 

Answer any one question. 10×1 

3. (a) Prove or disprove : A subgroup H of a group G is a normal subgroup if and only if every right coset of H

is also a left coset. 4 

 (b) Let G be a group. Let H be a subgroup of G such that ⊆ ( ). Show that if /  is cyclic then = ( ), where ( ) denotes the centre of G. 3

(c) Prove that the quotient group ( / , +) is infinite but each of its elements is of finite order. 3 



 T(III)-Mathematics-H-5(Mod.-X) ( 2 )  

 4. (a) Suppose that there is a homomorphism from a group G on . Prove that G has normal subgroups of 

index 2 and 5.  3 

  (b) If K is a subgroup of G and N is a normal subgroup of G, prove that ( ∩ ) is isomorphic to . 

       3 

  (c) Find all homomorphism from  into . How many of those are epimorphism? Justify your answer. 2+2 

Group-B 

(Tensor Calculus) 

(Marks-15) 

 Answer any three questions. 5×3 

 5. If ( = 1,2, … , ) are components of an arbitrary contravariant vector and  is an invariant then 

prove that + ( , = 1,2 … , ) are components of a second order tensor of type (0, 2). 5   

 6. If ( , = 1,2 … , ) are components of a skew-symmetric tensor of rank 2, then prove that 

    	 +	 	 	 = 0. 5 

 7. If all the components of a tensor are zero at a point in one co-ordinate system, then prove that they are all 

zero at this point in every co-ordinate system.  5  

 8. If  is a skew-symmetric tensor, then show that 

    , = √ 	 	 	 . 5 

 9. Find  and  corresponding to the line element  

  = 3( ) + 2( ) + 4( ) − 6( )	( ) in Riemannian space . 5 

Answer either Group-C or Group-D. 

Group-C 

(Differential Equation-II) 

(Marks-15) 

     Answer any one question. 15×1 

 10. (a) State the first shifting property of Laplace transformation. Using this property, find the Laplace 

transform of (3 cos 6 − 5 sin 6 ). 1+4 

  (b) Find the inverse Laplace transform of ( ) ( ). 5 
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  (c) Find the power series solution of the initial value problem 

    + + 2 = 0, (0) = 1, 	 (0) = 0. 5 

 11. (a) Find the Laplace transform of sin . 5 

  (b) Using shifting property of Inverse Laplace Transform, evaluate . 5 

  (c) Solve by using Laplace transform of  + 9 = cos 2 , when (0) = 1 and = −1. 5 

Group-D 

(Graph Theory) 

(Marks-15) 

     Answer any three questions. 5×3 

 12. (a) Show that there is no simple graph with six vertices of which the degrees of five vertices are 5, 5, 3, 2 

and 1. 2 

  (b) Prove that the number of odd degree vertices of a graph G is always even. 3 

 13. Obtain a minimal spanning tree of the following graph using Kruskal’s algorithm. 5 

 

 14. (a) Find a Euler trail in the following graph G. 3 

 

  (b) Explain spanning tree in a simple connected graph with example.  2 
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 15. State and prove the necessary and sufficient condition for a graph to be an Euler graph.  5 

 16. (a) Show that a complete graph with n vertices consists of 
( − 1) 2 edges. 3 

  (b) Prove that a connected graph with n vertices and ( − 1) edges is a tree. 2 

 

__________ 


