2021

MATHEMATICS - HONOURS

Fifth Paper

(Module - IX)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
\mathbb{R}, \mathbb{N} denote the set of real numbers and the set of natural numbers respectively.
Answer question no. 1 and any four questions from the rest.

1. (a) Answer any two questions:
(i) Prove or disprove : $T=\left\{1-\frac{1}{n^{2}}: n \in \mathbb{N}\right\}$ is compact.
(ii) Correct or justify: If a real valued function f is bounded in some closed interval $[a, b]$ in \mathbb{R} then f is a function of bounded variation in $[\mathrm{a}, \mathrm{b}]$.
(iii) Correct or justify : The power series $x+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{3}}+\frac{x^{4}}{4^{4}} \ldots$. is everywhere convergent. 2
(iv) Discuss the continuity of the limit function of the sequence of functions $\left\{f_{n}\right\}_{n}$ defined by $f_{n}(x)=\frac{x^{2 n}}{1+x^{2 n}}$ on $[0,1]$.
(b) Answer any two questions:
(i) Examine whether $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} e^{\sqrt{1+t}} d t}{x^{2}}=e$.
(ii) If f is differentiable on $[0,1]$, then $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.
(iii) Cite with justification an example of a function f such that $\frac{1}{f}$ is Riemann integrable but f is not so over its domain.
(iv) Let $H=(0,1) \subseteq \mathbb{R}$ and $\mathfrak{q}=\left\{I_{x}: x \in H\right\}$ where $I_{x}=\left(\frac{x}{2}, \frac{x+1}{2}\right)$. Verify whether \boldsymbol{q} is an open cover of H.
2. (a) If S is a bounded and closed set of real numbers, then prove that every infinite open cover of S has a finite subcover.
(b) Let $T=\left\{x \in \mathbb{R}: \cos \frac{1}{x}=0\right\} \cup\{0\}$. Is $\mathbb{R} \backslash T$ compact? Justify your answer.
(c) Examine whether the following function is of bounded variation :
$f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{c}x \sin \frac{\pi}{x}, x \in(0,1] \\ 0, x=0\end{array}\right.$.
3. (a) If two functions f and g are Riemann integrable on $[a, b]$, use Lebesgue's theorem to prove that $|f|-f g$ is Riemann integrable on $[a, b]$.
(b) Let a function $f:[0,3] \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{lll}x & \text { for } & 0 \leq x \leq 1 \\ 1 & \text { for } & 1<x \leq 2 \\ x-1 & \text { for } & 2<x \leq 3\end{array}\right.$ and let $F(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 3$. Verify whether F is derivable on [0, 3].
(c) Let f and g be continuous functions on a closed interval $[a, b]$ and $\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x$. Show that there exist a point $c \in[a, b]$ for which $f(c)=g(c)$.
4. (a) State and prove Darboux's Theorem on upper Riemann integral.
(b) Give example of a Riemann integrable function that has no primitive.
(c) Show that $\left|\int_{0}^{\pi / 2} \sin x \cos \left(x^{2}\right) d x\right| \leq 1 / 2$
5. (a) Give examples (with justification) of Riemann integrable functions f, g on $[0,1]$ such that $\int_{0}^{1}|f-g|=0$, but $f \neq g$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable over $[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ be a function such that ' g ' differs from ' f ' at finitely many points of $[a, b]$. Prove that g is also Riemann integrable over $[a, b]$ and $\int_{a}^{b} f=\int_{a}^{b} g$.
(c) Cite with justification an example of a function f such that $|f|$ is Riemann integrable but f is not so over its domain.
6. (a) Examine the applicability of Weierstrass' form of Second Mean Value Theorem of Integral Calculus for $\int_{0}^{\pi} x^{2} \sin x d x$
(b) State Dini's Theorem on sequence of real valued functions. If $f_{n}(x)=x^{n}(1-x)$, where $\left\{f_{n}\right\}_{n}$ is a sequence of functions defined on $[0,1]$ then by using Dini's theorem, prove that $f_{n} \rightarrow 0$ uniformly on $[0,1]$.
(c) A sequence of functions $\left\{f_{n}\right\}_{n}$ is defined by $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n^{2}}}$, where $x \in[-1,1]$. Show that $\left\{f_{n}\right\}_{n}$ is uniformly convergent on $[-1,1]$.
7. (a) State Dirichlet's test on uniform convergence for series of functions. Prove that the series $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$ is uniformly convergent on any closed interval $[a, b]$ contained in the open interval $(0,2 \pi) . \quad 2+3$
(b) Correct or justify :

$$
\begin{equation*}
\text { If } \sum_{n=0}^{\infty}\left|a_{n}\right| \text { is convergent then } \int_{0}^{1}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) d x=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} \tag{3}
\end{equation*}
$$

(c) Prove or disprove : The function defined by $f(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{10^{n}}, x \in \mathbb{R}$ is continuous everywhere.
8. (a) Find the radius of convergence of the power series $x+\frac{(2!)^{2} x^{2}}{4!}+\frac{(3!)^{2} x^{3}}{6!}+\ldots+\frac{(n!)^{2} x^{n}}{(2 n)!}+\ldots$
(b) Assuming the power series expansion for $\left(1-x^{2}\right)^{-1 / 2}$ as

$$
\frac{1}{\sqrt{1-x^{2}}}=1+\frac{1}{2} x^{2}+\frac{1.3}{2.4} x^{4}+\frac{1.3 .5}{2.4 .6} x^{6}+\ldots \ldots \ldots ;|x|<1
$$

Obtain the power series for $\sin ^{-1} x$ in $(-1,1)$.
(c) Correct or justify : If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $c \in \mathbb{R} \backslash\{0\}$, then it converges absolutely for all x such that $|x|<|c|$. 3

