2021

MATHEMATICS - HONOURS

Seventh Paper

(Module : XIII)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
\mathbb{R}, \mathbb{C} respectively denote the set of all real numbers and complex numbers

Group - A

[Analysis - IV]
(Marks : 20)
Answer any two questions.

1. (a) Let f and g be positive-valued functions defined on $[a, b]$ such that both f and g have infinite discontinuities only at ' a ', both are bounded and R-integrable on $[a+\varepsilon, b]$ for $0<\varepsilon<b-a$.

If $\underset{x \rightarrow a}{\mathrm{Lt}} \frac{f(x)}{g(x)}=l$, where l is a non-zero real number, prove that $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ converge or diverge together.
(b) Test the convergence of $\int_{0}^{1} x^{n-1} \log x d x$.
2. (a) Examine the convergence of $\int_{0}^{\pi} \frac{\sin x}{x^{p}} d x$.
(b) Show that the integral $\int_{0}^{\infty} e^{-a x} \frac{\sin x}{x} d x$ is convergent if $a \geq 0$.
(c) Examine the convergence of $\int_{0}^{1} x^{m-1}\left(\log _{e} x\right)^{n-1} d x$.
3. (a) Obtain the Fourier series expansion of $f(x)$ in $[-\pi, \pi]$ where
$f(x)= \begin{cases}0, & -\pi \leq x<0 \\ \frac{1}{4} \pi x, & 0 \leq x \leq \pi\end{cases}$
Hence show that the sum of the series $1+\frac{2}{3^{2}}+\frac{2}{5^{2}}+\ldots$. is $\frac{\pi^{2}}{8}$.
(b) Evaluate $\int_{0}^{1} d y \int_{y}^{1} e^{x^{2}} d x$.
4. (a) Let a function f be defined on a rectangle $R=[0,1 ; 0,1]$ as follows :
$f(x, y)= \begin{cases}\frac{1}{2}, & \text { when } y \text { is rational } \\ x, & \text { when } y \text { is irrational }\end{cases}$
Show that
(i) $\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y$ does not exist, but
(ii) $\int_{0}^{1} d y \int_{0}^{1} f(x, y) d x=\frac{1}{2}$.
(b) Evaluate $\iint_{R} \sqrt{\left|x^{2}-2 y\right|} d x d y$ where $R=[-2,2 ; 0,2]$

$$
\boldsymbol{O r}
$$

Show that $\iint_{E} \frac{d x d y}{\sqrt{(x+y+1)^{2}-4 x y}}=\frac{1}{2} \log _{e}\left(\frac{16}{e}\right)$
by using the transformation $x=u(1+v), y=v(1+u)$, where E is the triangle with vertices $(0,0)$, $(2,0),(2,2)$.

Group - B

(Marks : 15)

5. Answer any three questions:
(a) (i) Let X be the set of all sequences of real numbers and let $x=\left\{x_{n}\right\}_{n}$ and $y=\left\{y_{n}\right\}_{n}$ be any two members of X. Define $d: X \times X \rightarrow \mathbb{R}$ by,

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{5^{n}} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|}
$$

Show that d is a metric on X.
(ii) Show that in a trivial metric space (X, d), every subset A of X is both open and closed. 3+2
(b) (i) Prove that in a metric space (X, d) every open ball is an open set. Is the converse true? Justify your answer.
(ii) Let X denote the set of all Riemann integrable functions on $[a, b]$. For $f, g \in X$, define $d(f, g)=\int_{a}^{b}|f(x)-g(x)| d x$. Is d a metric on X ? Justify.
(c) (i) Let (X, d) be a metric space and let A, B be two subsets of X. Then show that

$$
\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A)+\operatorname{diam}(B)+d(A, B),
$$

where $d(A, B)$ denotes the distance between two sets A and B.
(ii) Let $A=\left\{(x, y): x^{2}+y^{2}=2\right\}$ and $B=\left\{(x, y):(x-1)^{2}+y^{2}=2\right\}$.

Find the diameter of the sets $A \cup B$ and $A \cap B$ with respect to the usual metric on \mathbb{R}^{2}.
(d) (i) Let $\left\{x_{n}\right\}$ be a sequence in a complete metric space (X, d) with the property that $\sum_{k=1}^{\infty} d\left(x_{k}, x_{k+1}\right)<\infty$. Show that $\left\{x_{n}\right\}$ is convergent.
(ii) Let $\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$ be sequences in a metric space (X, d) such that $x_{n} \rightarrow x$ in X. Then $y_{n} \rightarrow x$ in X if and only if $d\left(x_{n}, y_{n}\right) \rightarrow 0$ in \mathbb{R}.
(e) Let (x, d) be a complete metric space and $\left\{F_{n}\right\}_{n}$ be a descending sequence of non-empty closed sets in X with diameter of F_{n} tending to 0 as $n \rightarrow \infty$. Prove that $F=\bigcap_{n=1}^{\infty} F_{n}$ contains exactly one point.

Group - C

[Complex Analysis]

(Marks : 15)
6. Answer any three questions :
(a) (i) Define stereographic projection. Find the image point on the Riemann sphere $x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}=\frac{1}{4}$ for the point $4+3 i$ in the complex plane.
(ii) Show that if f is analytic in a domain $D(\subset \mathbb{C})$ and $|f(z)|$ is constant in D, then the function $f(z)$ is constant in D.
$2+3$
(b) Let G be region in \mathbb{C} and $\left(x_{0}, y_{0}\right) \in G$. If $u, v: G \rightarrow \mathbb{R}$ be differentiable at $\left(x_{0}, y_{0}\right)$, prove that, $u+i v: G \rightarrow \mathbb{C}$ is differentiable at $\left(x_{0}, y_{0}\right)$, provided u, v satisfy the Cauchy-Riemann equations at $\left(x_{0}, y_{0}\right)$.
(c) Examine the continuity and differentiability at $(0,0)$ and the Cauchy-Riemann equations at $(0,0)$ for the following function defined by

$$
f(z)= \begin{cases}\frac{x^{5}-y^{5}}{x^{2}+y^{2}}+i \frac{x^{5}+y^{5}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \tag{5}\\ 0 & , \text { if }(x, y)=(0,0)\end{cases}
$$

(d) (i) Let $u=x^{2}-y^{2}, v=\frac{-x}{x^{2}+y^{2}}$. Prove that both u and v satisfy Laplace's equation but $u+i v$ is not an analytic function on the complex plane.
(ii) If $f(z)$ and $g(z)$ be both analytic in a domain $D(\subset \mathbb{C})$ and if $f(z) g(z)=U(x, y)+i V(x, y)$, then show that U and V are both harmonic in D .
$2+3$
(e) Define a harmonic function in a region $G(\subseteq \mathbb{C})$. Prove that $u(x, y)=x^{3}-3 x y^{2}$ is a harmonic function on \mathbb{C}. Determine its conjugate harmonic and corresponding analytic function.

