T(6th Sm.)-Mathematics-G/(SEC-B-2)/CBCS

2021

MATHEMATICS — GENERAL

Paper : SEC-B-2

(Boolean Algebra)

Full Marks : 80

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Marks : 20)

- 1. Choose the correct alternative and justify your answer :
 - (a) An order relation is
 - (i) reflexive, symmetric and transitive
 - (ii) reflexive, antisymmetric and transitive
 - (iii) reflexive, symmetric and antisymmetric
 - (iv) antisymmetric, symmetric and transitive.
 - (b) It is false that
 - (i) (\mathbb{Z}, \leq) is a chain (ii) (\mathbb{Q}, \leq) is a chain
 - (iii) (\mathbb{R}, \leq) is a chain (iv) (\mathbb{C}, \leq) is a chain.
 - (c) It is true that in a order set
 - (i) there may be more than one maximal elements but no greatest element.
 - (ii) there is maximal element as well as greatest element.
 - (iii) there is always a greatest element.
 - (iv) there is always a smallest element.

(d) Let L and M be two lattices and let $f: L \to M$ be a homomorphism. Then f is

- (i) only join-homomorphism (ii) only meet-homomorphism
- (iii) only order-homomorphism (iv) both join-homomorphism and meet-homomorphism.
- (e) Let (B, +, ., ') be a Boolean algebra and $a, b \in B$. Then
 - (i) a + b = b + a, but $a \cdot b \neq b \cdot a$ (ii) $a + b \neq b + a$, but $a \cdot b = b \cdot a$
 - (iii) a + b = b + a and a.b = b.a (iv) $a + b \neq b + a$ and $a.b \neq b.a$.

Please Turn Over

2×10

T(6th Sm.)-Mathematics-G/(SEC-B-2)/CBCS(2)

(f) Let (L, \land, \lor) be a lattice where \land denotes meet operator and \lor denotes join operator. For any three elements *a*, *b* and *c* absorption law is given by

(i)
$$a \land (b \land c) = a$$

(ii) $a \land (a \land c) = a$
(iii) $a \land (a \land c) = a$
(iv) $a \lor (a \lor c) = a$.

(g) Dual of the statement $(a \land b) \lor c = (b \lor c) \land (c \lor a)$ is given by

(i) $(a \lor b) \lor c = (b \lor c) \land (c \lor a)$ (ii) $(a \land b) \land c = (b \lor c) \lor (c \lor a)$

(iii)
$$(a \lor b) \land c = (b \land c) \lor (c \land a)$$
 (iv) $(a \land b) \lor c = (b \land c) \land (c \lor a)$

- (h) Let $X = \{1, 2, 3\}$ be a set. Then P(X), the power set of X form a Boolean algebra under the set theoretical operation of union, intersection and complementation. The complement of the element $\{2\}$ in P(X) is given by
 - (i) {3} (ii) {1}
 - (iii) $\{1, 3\}$ (iv) $\{1, 2, 3\}$.
- (i) In Boolean algebra which of the following equality is true?

(i)
$$(a + b)' = a' + b'$$

(ii) $(a + b)' = a + b$
(iv) $(a + b)' = a + b'$.

Boolean expression corresponding to the above circuit is written as

(i)
$$xyz'$$
 (ii) $xy + z'$
(iii) $x + yz'$ (iv) $xz' + y$.

Group - B

(Marks : 60)

Answer any six questions.

- 2. (a) When a relation on a non empty set is called a partial order relation on a non empty set? If a relation R is defined on the set Z of all integers by $a \le b \leftrightarrow a^2 = b^2$. Is R a partial order?
 - (b) Let N denotes the set of natural numbers. If a relation \leq on N is defined as $a \leq b \leftrightarrow a$ divides b then show that it is a partial order relation on N.
 - (c) Write the main differences between partial order relation and equivalence relation on a non empty set. (2+2)+4+2

5+5

- 3. (a) Prove that a lattice (P, \leq) is distributive if and only if $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ for all $a, b, c \in L$.
 - (b) State and prove De Morgan's Laws in Boolean Algebra.

- (3)
- 4. (a) Let (P, \leq) be a partially ordered set. When (P, \leq) is called a lattice ordered set?
 - (b) When a lattice is called a complete lattice?
 - (c) Let $P(X) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$ where $X = \{1, 2\}$ and a order relation \leq is defined on P(X) as $A \leq B \leftrightarrow A \subseteq B$. Show that $(P(X), \leq)$ is a lattice. 3+3+4
- 5. (a) When a lattice is called a distributive lattice?
 - (b) Show that every distributive lattice is a modular lattice.
 - (c) Let $S = \{1, 2, 3, 4, 12\}$ and a partial order relation \leq is defined on S as $a \leq b \leftrightarrow a$ divides b. Then (S, \leq) forms a lattice. Is this a distributive lattice? 3+4+3
- 6. (a) When a non empty set is said to form a Boolean algebra with respect to two binary operation + and * and one unary operation '? Give an example of a Boolean algebra.
 - (b) Show that if a and b are any two elements in Boolean algebra B then prove that

(i)
$$a + a = a$$
, (ii) $a + (a * b) = a$. $4+(3+3)$

- 7. (a) What is Boolean polynomial? Give an example of Boolean polynomial.
 - (b) Use the method of *Karnaugh map* to find the minimal form of the following Boolean expression :

$$E = xyz + xyz' + x'yz' + x'y'z' + x'y'z$$
(2+2)+6

- 8. (a) Let L be a lattice and a, b, c, $d \in L$. Then prove that $a \leq b$ and $c \leq d \Rightarrow a \lor c \leq b \lor d$.
 - (b) Prove that every finite lattice is complete lattice. Is the converse true? 5+5
- **9.** (a) Let (L, \land, \lor) be a distributive lattice and $a, b, c \in L$. Prove that $a \land c = b \land c$ and $a \lor c = b \lor c \Rightarrow b = a$.
 - (b) A committee consisting of three members approves any proposal by majority vote. Each member can approve a proposal by pressing a button attached to their seats. Design as simple a circuit as you can which allow current to pass when and only when a proposal is approved. 5+5

10. (a) Let B be the set of all positive integers which are divisors of 70. For $a, b \in B$, let a + b = l.c.m.

of a, b;
$$a.b = h.c.f.$$
 of a, b and $a' = \frac{70}{a}$. Prove that $(B, +, \cdot, \prime)$ is a Boolean algebra.

(b) Let $(B, +, \cdot, ')$ be a Boolean algebra and $a, b, c \in B$. Prove that $(a + b) \cdot (b + c) \cdot (c + a) = (a \cdot b) + (b \cdot c) + (c \cdot a)$. 5+5

Please Turn Over

T(6th Sm.)-Mathematics-G/(SEC-B-2)/CBCS

- 11. (a) Construct a truth table for the Boolean expression : xy' + y(x' + z).
 - (b) Find a switching circuit which realizes the switching function f given by the following switching table : 5+5

(4)

x	у	Z	f(x, y, z)
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1