2021

MATHEMATICS - GENERAL

Paper: SEC-B-2

(Boolean Algebra)
Full Marks : 80
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
Group - A
(Marks : 20)

1. Choose the correct alternative and justify your answer :
(a) An order relation is
(i) reflexive, symmetric and transitive
(ii) reflexive, antisymmetric and transitive
(iii) reflexive, symmetric and antisymmetric
(iv) antisymmetric, symmetric and transitive.
(b) It is false that
(i) (\mathbb{Z}, \leq) is a chain
(ii) (\mathbb{Q}, \leq) is a chain
(iii) (\mathbb{R}, \leq) is a chain
(iv) (\mathbb{C}, \leq) is a chain.
(c) It is true that in a order set
(i) there may be more than one maximal elements but no greatest element.
(ii) there is maximal element as well as greatest element.
(iii) there is always a greatest element.
(iv) there is always a smallest element.
(d) Let L and M be two lattices and let $f: L \rightarrow M$ be a homomorphism. Then f is
(i) only join-homomorphism
(ii) only meet-homomorphism
(iii) only order-homomorphism
(iv) both join-homomorphism and meet-homomorphism.
(e) Let $\left(B,+, .,{ }^{\prime}\right)$ be a Boolean algebra and $a, b \in B$. Then
(i) $a+b=b+a$, but $a \cdot b \neq b \cdot a$
(ii) $a+b \neq b+a$, but $a \cdot b=b \cdot a$
(iii) $a+b=b+a$ and $a \cdot b=b \cdot a$
(iv) $a+b \neq b+a$ and $a . b \neq b . a$.

Please Turn Over
(f) Let (L, \wedge, \vee) be a lattice where \wedge denotes meet operator and \vee denotes join operator. For any three elements a, b and c absorption law is given by
(i) $a \wedge(b \wedge c)=a$
(ii) $a \wedge(a \wedge c)=a$
(iii) $a \wedge(a \vee b)=a$
(iv) $a \vee(a \vee c)=a$.
(g) Dual of the statement $(a \wedge b) \vee c=(b \vee c) \wedge(c \vee a)$ is given by
(i) $(a \vee b) \vee c=(b \vee c) \wedge(c \vee a)$
(ii) $(a \wedge b) \wedge c=(b \vee c) \vee(c \vee a)$
(iii) $(a \vee b) \wedge c=(b \wedge c) \vee(c \wedge a)$
(iv) $(a \wedge b) \vee c=(b \wedge c) \wedge(c \vee a)$.
(h) Let $X=\{1,2,3\}$ be a set. Then $P(X)$, the power set of X form a Boolean algebra under the set theoretical operation of union, intersection and complementation. The complement of the element $\{2\}$ in $P(X)$ is given by
(i) $\{3\}$
(ii) $\{1\}$
(iii) $\{1,3\}$
(iv) $\{1,2,3\}$.
(i) In Boolean algebra which of the following equality is true?
(i) $(a+b)^{\prime}=a^{\prime}+b^{\prime}$
(ii) $(a+b)^{\prime}=a^{\prime} * b^{\prime}$
(iii) $(a+b)^{\prime}=a+b$
(iv) $(a+b)^{\prime}=a+b^{\prime}$.
(j)

Boolean expression corresponding to the above circuit is written as
(i) $x y z^{\prime}$
(ii) $x y+z^{\prime}$
(iii) $x+y z^{\prime}$
(iv) $x z^{\prime}+y$.

Group - B

(Marks : 60)
Answer any six questions.
2. (a) When a relation on a non empty set is called a partial order relation on a non empty set? If a relation R is defined on the set Z of all integers by $a \leq b \leftrightarrow a^{2}=b^{2}$. Is R a partial order?
(b) Let \mathbb{N} denotes the set of natural numbers. If a relation \leq on \mathbb{N} is defined as $a \leq b \leftrightarrow a$ divides b then show that it is a partial order relation on \mathbb{N}.
(c) Write the main differences between partial order relation and equivalence relation on a non empty set.
$(2+2)+4+2$
3. (a) Prove that a lattice (P, \leq) is distributive if and only if $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ for all $a, b, c \in L$.
(b) State and prove De Morgan's Laws in Boolean Algebra.
4. (a) Let (P, \leq) be a partially ordered set. When (P, \leq) is called a lattice ordered set?
(b) When a lattice is called a complete lattice?
(c) Let $P(X)=\{\phi,\{1\},\{2\},\{1,2\}\}$ where $X=\{1,2\}$ and a order relation \leq is defined on $P(X)$ as $A \leq B \leftrightarrow A \subseteq B$. Show that $(P(X), \leq)$ is a lattice.
5. (a) When a lattice is called a distributive lattice?
(b) Show that every distributive lattice is a modular lattice.
(c) Let $S=\{1,2,3,4,12\}$ and a partial order relation \leq is defined on S as $a \leq b \leftrightarrow a$ divides b. Then (S, \leq) forms a lattice. Is this a distributive lattice?
$3+4+3$
6. (a) When a non empty set is said to form a Boolean algebra with respect to two binary operation + and * and one unary operation '? Give an example of a Boolean algebra.
(b) Show that if a and b are any two elements in Boolean algebra B then prove that

$$
\begin{equation*}
\text { (i) } a+a=a \text {, (ii) } a+(a * b)=a \text {. } \tag{3+3}
\end{equation*}
$$

7. (a) What is Boolean polynomial? Give an example of Boolean polynomial.
(b) Use the method of Karnaugh map to find the minimal form of the following Boolean expression :

$$
\begin{equation*}
E=x y z+x y z^{\prime}+x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z \tag{2+2}
\end{equation*}
$$

8. (a) Let L be a lattice and $a, b, c, d \in L$. Then prove that $a \leq b$ and $c \leq d \Rightarrow a \vee c \leq b \vee d$.
(b) Prove that every finite lattice is complete lattice. Is the converse true?
9. (a) Let (L, \wedge, \vee) be a distributive lattice and $a, b, c \in L$.

Prove that $a \wedge c=b \wedge c$ and $a \vee c=b \vee c \Rightarrow b=a$.
(b) A committee consisting of three members approves any proposal by majority vote. Each member can approve a proposal by pressing a button attached to their seats. Design as simple a circuit as you can which allow current to pass when and only when a proposal is approved.
10. (a) Let B be the set of all positive integers which are divisors of 70 . For $a, b \in B$, let $a+b=l . c . m$. of $a, b ; a . b=$ h.c.f. of a, b and $a^{\prime}=\frac{70}{a}$. Prove that $\left(B,+, \cdot,^{\prime}\right)$ is a Boolean algebra.
(b) Let $\left(B,+, \cdot{ }^{\prime}\right)$ be a Boolean algebra and $a, b, c \in B$.

Prove that $(a+b) \cdot(b+c) \cdot(c+a)=(a \cdot b)+(b \cdot c)+(c \cdot a)$.
11. (a) Construct a truth table for the Boolean expression : $x y^{\prime}+y\left(x^{\prime}+z\right)$.
(b) Find a switching circuit which realizes the switching function f given by the following switching table :

x	y	z	$f(x, y, z)$
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

