T(4th Sm.)-Mathematics-G/(SEC-B-1)/CBCS

2021

MATHEMATICS — GENERAL

Paper : SEC-B-1

(Mathematical Logic)

Full Marks : 80

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Notations have their usual meanings.]

- 1. Choose the correct option and justify your answer :
 - (a) The number of different non-equivalent statement formulas containing n statement letters is

(i)	2^{n^2}	(ii)	2 ^{<i>n</i>}
(iii)	$2^{2^{n}}$	(iv)	2^{2n} .

(b) A tautology statement formula is

(i)
$$p \land \sim p$$

(ii) $(p \lor q) \land \sim (p \land q)$
(iii) $p \to (q \to (p \land q))$
(iv) $\sim (\sim p \land q)$.

(c) If $p \leftrightarrow q$ is logically equivalent to a statement formula A, then A may be

(i)
$$p \to q$$

(ii) $q \to p$
(iii) $(p \to q) \lor (q \to p)$
(iv) $(p \to q) \land (q \to p)$.

(d) An adequate system of connectives is

(i)
$$\{\lor, \rightarrow\}$$
(ii) $\{\land, \rightarrow\}$ (iii) $\{\sim, \rightarrow\}$ (iv) $\{\sim, \leftrightarrow\}$.

(e) Negation of $\exists x (P \rightarrow Q)$ is equivalent to

(i)
$$\exists x (\neg P \rightarrow \neg Q)$$
 (ii) $\forall x (P \land \sim Q)$

- (iii) $\exists x (P \to \neg Q)$ (iv) $\forall x (\neg P \land Q)$.
- (f) If Γ is a set of well formed formulas (wffs) and α and β are well formed formulas, and $\Gamma \cup \{\alpha\} \vdash \beta$ then
 - (i) $\Gamma \vdash \alpha$ (ii) $\Gamma \vdash (\alpha \rightarrow \beta)$
 - (iii) $\Gamma \vdash (\beta \rightarrow \alpha)$ (iv) $\Gamma \vdash \beta$.

Please Turn Over

 $(1+1) \times 10$

T(4th Sm.)-Mathematics-G/(SEC-B-1)/CBCS

- (g) Let p(x) be a predicate on a non-empty set D. Then $\sim \forall x \ p(x) \equiv$
 - (i) $\exists x \sim p(x)$ (ii) $\sim \exists x p(x)$
 - (iii) $\forall x \sim p(x)$ (iv) $\sim \exists x \sim p(x)$.
- (h) Which one of the following is in prenex normal form?
 - (i) $\forall x \ (x \le y) \to \exists z \ (x \le z \land z \le y)$ (ii) $\exists v \sim P \to \forall v P$ (iii) $\exists v \ (P \to Q)$ (iv) $\exists v \ (P \to Q) \leftrightarrow (\forall v \ (Q \to P)).$

(2)

- (i) In a Bengali class
 - (i) Bengali is the meta language (ii) Bengali is the object language
 - (iii) Nepali is the object language (iv) French is the object language.
- (j) The inverse of the statement formula (~ $r \rightarrow s$) is
 - (i) $(r \to \sim s)$ (ii) $(\sim r \to \sim s)$ (iii) $(s \to r)$ (iv) $(s \to \sim r)$.
 - Unit I

2. Answer any two questions :

- (a) Let p, q, r be the propositions :
 - p: The date of election has been declared
 - q: The votes will be casted on EVM
 - r: The votes will be casted on ballots.
 - Express each of the following propositions in English language :
 - (i) $p \wedge q$, (ii) $p \wedge (q \wedge r)$, (iii) $p \wedge (q \vee r)$, (iv) $p \wedge (q \vee \sim r)$ 1+1+1+2
- (b) Find the truth value of the statement "if x is an odd integer, then x^2 is an odd integer". Write down the converse and contra positive statement of the above statement with its truth value. 1+2+2
- (c) Find the truth table of the statement formula : $((\sim p \rightarrow q) \lor (\sim r \rightarrow p)) \leftrightarrow (\sim q \land r).$ 5

Unit - II

- 3. Answer any six questions :
 - (a) (i) Write the following sentence as statement form, using statement letters to stand for atomic sentences.
 Either Ram will come to the college and Sam will not; or Ram will not come to the college and Sam will attend all the classes.
 - (ii) Determine whether the following are tautologies.

$$(((A \Rightarrow B) \Rightarrow B) \Rightarrow A) \text{ and } (A \land \neg A).$$
 2+(2+1)

5

(b) Find the DNF of the formula $\sim (A \rightarrow B) \vee (\sim A \wedge C)$.

- (c) A committee consisting of three members approves any proposal by majority vote. Each member can approve a proposal by pressing a button attached to their seats. Design a circuit as simple as you can which allow current to pass when and only when a proposal is approved.
- (d) Determine whether the formula $(A \lor ((B \land C))) \rightarrow ((A \leftrightarrow C) \lor B)$ is a tautology. 5
- (e) Define the terms 'premises', 'consequence', 'proof' in propositional calculus. 1+2+2
- (f) Let P_1 , P_2 , P_3 be distinct prime formulas. Find the simplest formula that is equivalent to every formula whose prime constituents are P_1 , P_2 , P_3 and whose corresponding truth value operation is *f*.

P_1	P_2	<i>P</i> ₃	$f\left(P_1, P_2, P_3\right)$
T	Т	Т	Т
F	Т	Т	F
Т	F	Т	Т
F	F	Т	F
T	Т	F	Т
F	Т	F	Т
T	F	F	Т
F	F	F	Т

(g) State Deduction Theorem in Propositional Calculus.
 Show that {B → C, C → D} ⊢ B → D where B, C, D are well formed formulas in Propositional Calculus.
 2+3

- (h) Show that the well formed formula $B \rightarrow (C \rightarrow (B \land C))$ is a theorem in Propositional Calculus, where *B*, *C* are well formed formulas in Propositional Calculus. 5
- (i) Show that each statement form in the column I is logically equivalent to the form in the column II.

	Ι	II
(i)	$A \Leftrightarrow B$	$(A \land B) \lor (\neg A \land \neg B)$
(ii)	$A \land (B \oplus C)$	$(A \land B) \oplus (A \land C)$

where \oplus stands for 'Exclusive OR'.

(j) Prove that $\vdash (\sim B \rightarrow (B \rightarrow C))$, where B, C are well formed formulas in Propositional Calculus. 5

Unit - III

4. Answer any four questions :

- (a) Define atomic formula and well formed formula in Predicate Calculus. Symbolize the given sentence in a well formed formula : "Anyone who is persistent can learn Logic". 1+2+2
- (b) Describe about a formal theory for Predicate Calculus.

Please Turn Over

(3)

2+3

5

T(4th Sm.)-Mathematics-G/(SEC-B-1)/CBCS (4)

(c) Define free and bound variable in a well formed formula. Find the free and bound variable(s) in the well formed formula :

$$(\forall x_1) \Big(A_1^2(x_1, x_2) \to (\forall x_1) A_1^1(x_1) \Big).$$

$$3+2$$

- (d) Test the logical validity of the given arguments : All integers are rational numbers. All rational numbers are real numbers. 2 is an integer. Therefore, 2 is a real number. 5
- (e) Indicate the free and bound occurences of each variable in the following :

(i)
$$((\forall x_1)(x_1 > 0)) \land (\exists x_2(x_2 = x_1))$$

(ii) $\exists x_1 \forall y_1(z = y_1 \lor y_1 = x_1).$ 3+2

5

- (f) Prove that $\vdash (\forall x)(B \leftrightarrow C) \rightarrow ((\forall x)B \leftrightarrow (\forall x)C)$ where *B*, *C* are well formed formulas in Predicate Calculus. 5
- (g) Reduce to prenex normal form :

 $\forall x \forall y (x < y \rightarrow \exists z ((x < z) \land (z < y))).$