2021

MATHEMATICS — GENERAL

Paper : GE/CC-2

Full Marks : 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

[Throughout the question paper, notations/symbols carry their usual meanings]

বিভাগ - ক

(মান : ১০)

>। সঠিক উত্তর বেছে নাও ঃ

- (ক) $\left\{ (-1)^n \cdot n \right\} = \{ -1, 2, -3, 4, ... \}$ আনুক্রমটি হল
 - (অ) নীচে সীমাবদ্ধ (আ) উপরে সীমাবদ্ধ
 - (ই) দোদুল্যমান (ঈ) এদের কোনোটিই নয়।
- (খ) যদি $f(x) = (x-1)^3, x \in R$ হয়, তাহলে,
 - (অ) x = 1-এ *f*-এর চরম মান আছে।
 - (আ) x = 1-এ *f*-এর অবম মান আছে।
 - (ই) x = 1-এ *f*-এর চরম বা অবম কোনো মান নাই।
 - (ঈ) এদের কোনোটিই নয়।

Please Turn Over

2×20

(৬)
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$
 -এর মান হল
(অ) 1 (আ) $\frac{1}{2}$
(ই) $\frac{1}{3}$ (ঈ) $\frac{1}{6}$

- (চ) যদি $\mid \vec{p} \mid$ =10, $\mid \vec{q} \mid$ =1 এবং $\mid \vec{p} \times \vec{q} \mid$ =8 হয় তখন $\vec{p} \cdot \vec{q}$ -এর মান হল
 - (অ) 4
 (আ) 8
 (ই) 6
 (ঈ) এদের কোনোটিই নয়।

(2)

(ছ) $\vec{\alpha} = 2\hat{i} + 2\hat{j} - \hat{k}$ এবং $\vec{\beta} = 3\hat{i} + 4\hat{k}$ ভেক্টর দুটির মধ্যবর্তী কোণ-এর মান হল

(I)
$$\cos^{-1}\left(\frac{2}{15}\right)$$
(II) $\cos^{-1}\left(\frac{1}{15}\right)$ (I) $\cos^{-1}\left(\frac{1}{5}\right)$ (II) $\cos^{-1}\left(\frac{4}{15}\right)$

(জ) বুলীয় বীজগণিতে xy(x'+y')-এর মান হল

$$(\overline{z}) y^2$$
 $(\overline{z}) 0 +$

(ঝ) $az + b = a^2x + y$ অপেক্ষকটি থেকে a (≠ 0) এবং b(≠ 0) অপসারণ করলে যে আংশিক অবকল সমীকরণ (partial differential equation) পাওয়া যাবে, সেটি হল

(a)
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$
 (a) $\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} = 1$
(c) $\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} = 0$ (c) $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$

- (এঃ) ধরা যাক d = gcd(a, b) তাহলে ax + by = c রৈখিক ডায়াফানটাইন (Diaphantine) সমীকরণটির সমাধান থাকবে যখন এবং কেবলমাত্র যখন
 - (অ) a, d দ্বারা বিভাজ্য(আ) b, d দ্বারা বিভাজ্য
 - (ই) c, d দ্বারা বিভাজ্য
 (ঈ) এদের কোনোটিই নয়।

(3)

বিভাগ - খ

(Differential Calculus II)

(ইউনিট - ১)

(মান : ১৫)

যে-কোনো তিনটি প্রশ্নের উত্তর দাও।

২। দেখাও যে, $\{u_n\}$ অনুক্রমটি ক্রমবর্ধমান এবং উপরে সীমাবদ্ধ যখন $u_n=rac{3n}{n+1}, n\in\mathbb{N}$ এটির সীমা নির্ণয় করো। ২+২+১

(ক) একটি উদাহরণসহ ব্যাখ্যা করো ঃ দোদুল্যমান অসীম শ্রেণি।

(খ)
$$x + \frac{1}{2}\frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4}\frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\frac{x^7}{7} + \dots$$
 শ্রেণিটির অভিসারিত্ব পরীক্ষা করো। ২+৩

- 8। (ক) $\lim_{x \to \frac{\pi}{2}} (1 \sin x) \tan x$ -এর মান নির্ণয় করো।
 - (খ) $f(x) = 4 (6 x)^{\frac{2}{3}}$ অপেক্ষকটিতে [5, 7] অন্তরে Lagrange's Mean Value theorem প্রয়োগ করা যাবে কিনা পরীক্ষা করে দেখাও। ২+৩

$$oldsymbol{lpha}$$
। $f(x)=x-\log\Bigl(1+x^2\Bigr), x\in {\mathbb R}$ অপেক্ষকটির চরম এবং অবম মান (যদি থাকে) নির্ণয় করো। $oldsymbol{lpha}$

ও। Lagrange-র "অনির্ধারিত গুণক-এর সাহায্যে প্রমাণ করো যে $u = x^2 + y^2 + z^2$ -এর প্রান্তিক মান পাওয়া যাবে যখন

$$x = \frac{30}{19}, y = \frac{45}{19}, z = \frac{75}{19}$$
, যেখানে শত হল $2x + 3y + 5z = 30$ (৫

বিভাগ - গ

(Differential Equation II)

৭। সমাধান করো $z^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + 2y = \cos(\log x)$

৮। Lagrange's পদ্ধতি প্রয়োগ করে নিম্নলিখিত আংশিক অবকল সমীকরণটি (Partial Differential Equation) সমাধান

Please Turn Over

(4)

বিভাগ - ঘ

(Vector Algebra)

(মান : ৫)

যে-কোনো একটি প্রশ্নের উত্তর দাও।

- ১০। 15 একক-এর একটি বল i 2j + 2k ভেক্টরের দিকে (Direction) (2, -2, 2) বিন্দু দিয়ে যাচ্ছে। বলটির টর্ক (1, 1, 1) বিন্দুতে [moment about the point (1, 1, 1)] নির্ণয় করো।

বিভাগ - ঙ

(Discrete Mathematics)

(ইউনিট - 8)

(মান : ৩০)

যে-কোনো তিনটি প্রশ্নের উত্তর দাও।

- **১১** (ক) Mathematical Induction-এর সাহায্যে প্রমাণ করো যে, $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 n \in \mathbb{N}.$
 - (খ) 5x + 7y = 100-এর ধনাত্মক পূর্ণসংখ্যার সমাধান (Positive integral solutions) নির্ণয় করো। $\ell + \ell$
- ১২। (ক) সর্বনিম্ন ধনাত্মক পূর্ণসংখ্যাটি (Least positive integer) নির্ণয় করো যেটিকে 3, 5 ও 11 দ্বারা ভাগ করলে যথাক্রমে 2, 3 ও 4 ভাগশেষ থাকবে।
 - (খ) যদি gcd(a,b)=1 হয়, তবে প্রমাণ করো $gcd(a^2,b^2)=1$ & a + & b = 1
- **১৩**। (ক) Wilson-এর উপপাদ্যটি লেখো। 7¹⁰⁰ এর একক স্থানীয় অঙ্কটি বের করো।
 - খ) 1! + 2! + 3! + + 100! কে 15 দিয়ে ভাগ করলে ভাগশেষ কত হবে নির্ণয় করো।
- **১**৪। (ক) নিম্নলিখিত ISBNটি সঠিক কিনা নির্ণয় করো— 81-213-0871-9।
 - (খ) প্রমাণ করো, $\phi(5n) = 5\phi(n)$ যখন এবং কেবলমাত্র যখন n, 5 দ্বারা বিভাজ্য। $\ell + \ell$

έ×۵

১৫। (ক) $f = x \cdot y' + (y + z)' \cdot (x + y)$ বুলীয় অপেক্ষকটিকে x, y, z চলরাশির জন্য DNF-এ রূপান্তরিত করো।

(খ) একটি Switching Circuit নির্মাণ করো যেটি নীচের সত্যসারণীকে সিদ্ধ করে। Circuit-টিকে সরলীকৃত করো। 🤅 ৮৫

x	У	Z	f(x, y, z)
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	0

[English Version]

The figures in the margin indicate full marks.

Group - A

(Marks : 10)

1. Choose the correct alternatives :

- (a) The sequence $\{(-1)^n \cdot n\} = \{-1, 2, -3, 4, ...\}$ is,
 - (i) bounded below (ii) bounded above
 - (iii) oscillatory (iv) None of these.

(b) If a function f be defined by $f(x) = (x-1)^3, x \in \mathbb{R}$, then

- (i) f has maximum at x = 1
- (ii) f has minimum at x = 1
- (iii) f has neither maximum nor minimum at x = 1
- (iv) None of these.

(i) convergent

(c) The series
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)(n+3)}$$
 is

- (ii) divergent
- (ii) oscillatory (iv) None of these.

Please Turn Over

(5)

1×10

(d) The particular integral of
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x$$
 is

(i) $\frac{1}{2}x^2e^x$ (ii) x^2e^x (iii) xe^x (iv) None of these.

(6)

- (e) The value of $\lim_{x \to 0} \frac{x \sin x}{x^3}$ is
 - (i) 1 (ii) $\frac{1}{2}$ (iii) $\frac{1}{3}$ (iv) $\frac{1}{6}$.

(f) If $|\vec{p}| = 10$ and $|\vec{q}| = 1$ and $|\vec{p} \times \vec{q}| = 8$, then the value of $\vec{p} \cdot \vec{q}$ is

- (i) 4 (ii) 8
- (iii) 6 (iv) None of these.

(g) The angle between the vectors $\vec{\alpha} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{\beta} = 3\hat{i} + 4\hat{k}$ is

(i) $\cos^{-1}\left(\frac{2}{15}\right)$ (ii) $\cos^{-1}\left(\frac{1}{15}\right)$ (iii) $\cos^{-1}\left(\frac{1}{5}\right)$ (iv) $\cos^{-1}\left(\frac{4}{15}\right)$.

(h) In Boolean Algebra xy(x'+y') is equal to

- (i) 1 (ii) x^2
- (iii) y^2 (iv) 0.
- (i) The partial differential equation obtained by eliminating the arbitrary constant $a (\neq 0)$ and $b(\neq 0)$ from the function $az + b = a^2x + y$ is

(i)
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$

(ii) $\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} = 1$
(iii) $\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} = 0$
(iv) $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$.

- (j) Let d = gcd(a, b). Then the Diophantine equation ax + by = c has a solution iff
 - (i) d divides a (ii) d divides b
 - (iii) d divides c (iv) None of these.

(7) Group - B

(Differential Calculus II)

(Unit - 1)

(Marks : 15)

Answer any three questions.

- 2. Show that the sequence $\{u_n\}$ is monotonic increasing and bounded above when $u_n = \frac{3n}{n+1}$, $n \in \mathbb{N}$. Find its limit. 2+2+1
- 3. (a) Define an oscillatory infinite series with an example.
 - (b) Examine the convergence of the series :

$$x + \frac{1}{2}\frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4}\frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\frac{x^7}{7} + \dots \dots 2 + 3$$

- 4. (a) Evaluate $\lim_{x \to \frac{\pi}{2}} (1 \sin x) \tan x$.
 - (b) Examine whether Lagrange's Mean Value theorem can be applied to the function $f(x) = 4 (6 x)^{\frac{2}{3}}$ in the interval [5, 7]. 2+3
- 5. Find the maxima and minima (if exists) of $f(x) = x \log(1 + x^2), x \in \mathbb{R}$. 5
- 6. Using the Lagrange's method of undetermined multiplier, show that an extreme value of $u = x^2 + y^2 + z^2$, subject to the condition 2x + 3y + 5z = 30 is attained at $x = \frac{30}{19}$, $y = \frac{45}{19}$, $z = \frac{75}{19}$.

Group - C (Differential Equation II) (Unit - 2)

(Marks : 5)

Answer *any one* question. 5×1

7. Solve:
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + 2y = \cos(\log x)$$
.

Please Turn Over

8. Solve the following linear partial differential equation by Lagrange's method : $\tan x \frac{\partial z}{\partial x} + \tan y \frac{\partial z}{\partial y} = \tan z$.

Group - D (Vector Algebra) (Unit - 3) (Marks : 5)

Answer *any one* question.

- 9. If $\vec{\alpha} = \frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}), \ \vec{\beta} = \frac{1}{7} (3\hat{i} 6\hat{j} + 2\hat{k}) \text{ and } \vec{\gamma} = \frac{1}{7} (6\hat{i} + 2\hat{j} 3\hat{k}).$ Find $|\vec{\alpha}|, |\vec{\beta}|, |\vec{\gamma}|$ and show that
 - $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are mutually perpendicular and $\vec{\alpha} \times \vec{\beta} = \vec{\gamma}$.
- 10. A force of 15 units acts in the direction of the vector $\hat{i} 2\hat{j} + 2\hat{k}$ and passes through a point (2, -2, 2). Find the moment of the force about the point (1, 1, 1).

Group - E (Discrete Mathematics)

(Unit - 4)

(Marks : 30)

Answer any three questions.

11. (a) Prove by mathematical Induction
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 n \in \mathbb{N}$$
.

- (b) Find all positive integral solutions of 5x + 7y = 100.
- 12. (a) Find the least positive integer which yields remainders 2, 3 and 4 when divided by 3, 5 and 11 respectively.
 - (b) Prove that $gcd(a^2, b^2) = 1$ if gcd(a, b) = 1. 5+5
- 13. (a) State Wilson's theorem. Find the digit of the unit place of 7^{100} .
 - (b) What is the remainder when $1! + 2! + 3! + \dots + 100!$ is divided by 15? 5+5
- 14. (a) Determine whether the following ISBN is valid—81-213-0871-9.
 - (b) Prove that $\phi(5n) = 5\phi(n)$ iff 5 divides *n*. 5+5

5×1

5+5

- 15. (a) Express the Boolean function $f = x \cdot y' + (y + z)' \cdot (x + y)$ in DNF in the variables x, y, z.
 - (b) Find a switching circuit which realizes the switching function f(x, y, z) given by the following truth table. Simplify the circuit.

x	y	Ζ	f(x, y, z)
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	0

5+5

(9)