2021

MATHEMATICS - GENERAL

Fourth Paper

Full Marks: 100
Candidates are required to give their answers in their own words as far as practicable.
প্র/ন্তলিখিত সংখ্যাগ্ললি পূণমান নির্দেশক।
Module-VII is compulsory and answer any one Group from Module-VIII

Module-VII

[Elements of Computer Science and Programming]
(মान : ৫०)
১ নং প্রশ্ন এবং অবশিষ্ট থেকে যে-কোনো পাঁচটি প্রশেরের উত্তর দাও।
১। যে-কোনো পাঁচটি প্রক্নের উত্তর দাও:
২×৫
(ক) $|\tan x|+e^{-x^{3}}-$-এর FORTRAN রূপ লেখো।
(খ) সম্পূর্ণ নাম লেখো ঃ (অ) CPU (আ) ALU।
(গ) তিন প্রবেশ-দ্বার বিশিষ্ট NOR দ্বারের সত্যসারণী লেখো।
(ঘ) निম্नলিথিত বুলীয় অপেকককের একটি সুইচ বর্তনী গঠন করো ঃ $x y+x y^{\prime}+x^{\prime} y^{\prime}$ ।
(ঙ) L-এর মান নির্ণয় করো, যেখানে $L=I / J+K * * 2 / M+A^{*} B$, যখन $I=4, J=3, K=5, M=7$, $A=1 \cdot 5, B=3 \cdot 4$.
(Б) $(43.1875)_{10}$ সংখ্যাট্টিকে দ্বৈতাঙ্গী সংখ্যাতে পরিণত করো।
(ছ) निम্नলিখিত প্রোগ্রাম-অংশ্তিতে ‘ N '-এর সর্বশেযষ মান কত:
IF $(2 * J \cdot L E Q \cdot 3 * N)$ GO TO 10
$N=N+2$
GO TO 20
$10 N=J$
$20 N=N+J$
यमि N ఆ $J-এ$ এ প্রাথমিক মানদ্বয় যথাক্রুমে $N=2, J=3$ হয়?
(জ) নিম্নলিখিত বিবৃতিটির ভুল (যদি থাকে) শনাক্ত করো এবং সঠিক বিবৃতিটি লেরো (যুক্তি সহকরে) ঃ $\operatorname{READ}\left({ }^{*},{ }^{*}\right) A, B / 0 \cdot 7,2 \cdot 5 /$.
(ঝ) $x^{\prime} y^{\prime}+x y$ এই বুলীয় রাশিমালাটির Complement (পরিপূরক)-কে DNF আকারে প্রকাশ করো।
Please Turn Over

২। (ক) কেবলমাত্র NAND যৌক্তিক দ্বারের সাহায্যে $f(x, y, z)=x+y+x z+y^{\prime} z$ এই অপেক্ষকটি’র একটি যৌক্তিক বর্তনী অঙ্কন করো।
(খ) $(x+y+z)(x y+x z)$-কে সম্পূর্ণ বৈকল্পিক স্বভাবী (DNF) আকারে প্রকাশ করো। 8
৩। (ক) টীকা লেখো :
(অ) ASCII কোড (আ) যন্ত্রভাযা
(খ) একটি সংখ্যা 4 দিয়ে বিভাজ্য, কিন্তু 8 দিয়ে অবিভাজ্য কি-না পরীক্ষা করার জন্য একটি অ্যালগোরিদম্ লেখো। 8
8 (ক) x-এর মান নির্ণয় করো, যেখান $(A B 3)_{16}=(x)_{6}$ ২
(খ) মান निর্ণয় করো : $(1101 \cdot 01)_{2} \div(101)_{2} \quad$ ○
(গ) দৃষ্টান্তসহ ব্যাখ্যা করো : IF-THEN-ELSE বিবৃতি (FORTRAN এ)। ৩
৫। (ক) Simpson's $\frac{1}{3}$ নিয়ম ব্যবহার করে $\int_{0}^{1} \frac{d x}{1+x+x^{2}}$ এর মান চার দশমিক স্থান পর্যন্ত সঠিকভাবে পেতে একটি FORTRAN প্রোগ্রাম লেখো।
(খ) ফাংশন সাব-প্রোগ্রাম ব্যবহার করে $n_{c_{r}}$ মান নির্ণয়ের জন্য একটি FORTRAN প্রোগ্রাম লেখো।
৬। (ক) একটি স্বাভাবিক সংখ্যা 3 দ্বারা বিভাজ্য, কিন্তু 9 দ্বারা অবিভাজ্য কি-না পরীক্মা করার জন্য একটি অ্যালগোরিদম্ তৈরি করো।
(খ) $2 x^{2}+7 x+3=0$ সমীকরণের বীজগুলি নির্ণয়ের জন্য একটি FORTRAN 77/90 প্রোগ্রাম লেখো।
৭। (ক) 9টি কোটি নিয়ে Simpson's $\frac{1}{3}$ সূত্রের সাহায্যে $\int_{1.6}^{2.8} \frac{d x}{\sqrt{1+x^{2}}}$-এর মান বের করার জন্য একটি BASIC প্রোগ্রাম লেখো।
(খ) BASIC-এ TAB function-এর উপর একটি টীকা লেখো।
b। (ক) Karnaugh Map ব্যবহার করে নিম্নলিখিত বুলীয় অপেক্ষকটি সরল আকারে প্রকাশ করো :

$$
\begin{equation*}
f(x, y, z)=x y^{\prime} z+x y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y^{\prime} z^{\prime} \tag{8}
\end{equation*}
$$

(খ) প্রদত্ত সুইচ বর্তনীর জন্য একটি বুলীয় রাশি গঠন করো:

এর সমতুল একটি সরল বর্তনীর নকশা অঙ্কন করেরা।

৯। (ক) একটি Fibonacci sequence $1,1,2,3,5,8, \ldots$, (যার শেষ পদটি ১০০০-এর বেশি নয়) তৈরি করার জন্য একটি FORTRAN প্রোগ্রাম লেখো।
(খ) একটি ম্যাট্রিক্সের transpose বের করার জন্য একটি BASIC/FORTRAN প্রোগ্রাম লেখো।
১০। (ক)

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(অ) উপরোক্ত সত্যসারণী দ্বারা প্রকাশিত অপেক্ষক ‘f' -কে minterms-গুলির যোগফল বা DNF আকারে প্রকাশ করো।
(আ) ' f '-এর DNF আকারে সরলীকরণ করো। ২+২
(খ) বুলীয় বীজগণিতে প্রমাণ করো :
$f(a, b, c)=a b+b c+c a$
$=(a+b) \cdot(b+c) \cdot(c+a)$

[English Version]

The figures in the margin indicate full marks.

Module-VII

[Elements of Computer Science and Programming]
(Marks : 50)
Answer question number 1 and any five from the rest.

1. Answer any five questions:
(a) Write FORTRAN expression of $|\tan x|+e^{-x^{3}}$.
(b) Write full forms of (i) CPU (ii) ALU.
(c) Write down truth table of NOR gate with three inputs.
(d) Construct a switching circuit representing the Boolean expression $x y+x y^{\prime}+x^{\prime} y^{\prime}$.
(e) Evaluate the value of L, where $L=I / J+K^{*} 2 / M+A^{*} B$, when $I=4, J=3, K=5, M=7$, $A=1 \cdot 5, B=3 \cdot 4$.
(f) Convert $(43 \cdot 1875)_{10}$ to its binary equivalent.
(g) What would be the final value of ' N ' at the end of the following program segment:

IF $(2 * J \cdot L E Q \cdot 3 * N)$ GO TO 10
$N=N+2$
GO TO 20
$10 N=J$
$20 N=N+J$
if the initial values of N and J are assumed to be $N=2, J=3$?
(h) Point out error if any, in the following statement with proper reasoning and correct them :
$\operatorname{READ}\left({ }^{*},{ }^{*}\right) A, B / 0 \cdot 7,2 \cdot 5 /$.
(i) Find the complement of the following Boolean expression in DNF $x^{\prime} y^{\prime}+x y$.
2. (a) Using only NAND logic gate, draw a circuit that realizes the function $f(x, y, z)=x+y+x z+y^{\prime} z$.
(b) Express $(x+y+z)(x y+x z)$ in full Disjunctive Normal Form (DNF). 4
3. (a) Write short notes on:
(i) ASCII Code
(ii) Machine Language
(b) Draw an algorithm to test whether a given natural number is divisible by 4 , but not by 8 . 4
4. (a) Calculate the value of x, where $(A B 3)_{16}=(x)_{6} \quad 2$
(b) Compute $(1101 \cdot 01)_{2} \div(101)_{2} \quad 3$
(c) Explain with illustrations IF-THEN-ELSE statement in FORTRAN. 3
5. (a) Write a FORTRAN program to find the value of the integral $\int_{0}^{1} \frac{d x}{1+x+x^{2}}$ correct to four decimal places using Simpson's $\frac{1}{3}$ rd rule.
(b) Write a FORTRAN program to find $n_{c_{r}}$ using function sub-program.
6. (a) Write an efficient algorithm to test whether a given natural number is divisible by 3 , but not by 9 .
(b) Write a FORTRAN 77/90 program to find the roots of the equation $2 x^{2}+7 x+3=0 \quad 4$
7. (a) Write a BASIC programme to evaluate $\int_{1.6}^{2.8} \frac{d x}{\sqrt{1+x^{2}}}$ by Simpson's $\frac{1}{3}$ rd rule using 9 ordinates. 6
(b) Write a short note on TAB function in BASIC.
8. (a) Using Karnaugh Map, express the following Boolean function in simplified form :

$$
\begin{equation*}
f(x, y, z)=x y^{\prime} z+x y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y^{\prime} z^{\prime} \tag{4}
\end{equation*}
$$

(b) Construct a Boolean function to represent the following switching circuit.

Draw an equivalent simplified circuit.
9. (a) Write a FORTRAN programme to generate the Fibonacci sequence $1,1,2,3,5,8, \ldots$, the last term being not greater than 1000 .
(b) Write a BASIC/FORTRAN program to fine the transpose of a matrix.
10. (a) Given the truth table:

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(i) Obtain ' f ' in sum of minterms or in DNF.
(ii) Obtain simplified form of ' f ' in sum of products.
(b) Prove that $f(a, b, c)=a b+b c+c a$

$$
\begin{equation*}
=(a+b) \cdot(b+c) \cdot(c+a) \tag{4}
\end{equation*}
$$

Module-VIII

(বিভাগ - ক)
[A Course of Calculus]
(मान : ৫०)

১১ নং প্রশ্ন এবং অবশিষ্ট থেকে যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও।

১১। যে-কোনো পাচটি প্রশ্নের উত্তর দাও:
২×®
(ক) $f_{n}(x)=\frac{\sin n x}{n} ; n \in N ; x \in R$, তাহলে সীমা অপেক্ষক $\left\{f_{n}\right\}_{n}$-এর পয়েন্ট অনুযায়ী সীমা অপেক্ষক (যদি থাকে)-এর মান নির্ণয় করো।

Please Turn Over
(খ) $x+\frac{x^{2}}{2^{2}}+\frac{2!}{3^{3}} x^{3}+\frac{3!}{4^{4}} x^{4}+\ldots$ घাত শ্রেণিটির অভিসরণ ব্যাসার্ধ নির্ণয় করো।
(গ) দেখাও যে $\sum_{n=1}^{\infty} \frac{\cos n x}{n^{4}}$ শ্রেণিটি R-এর উপর সমভাবে অভিসারী।
(ঘ) মান নির্ণয় করো: $L\left\{\cos ^{2} a t\right\}$ ।
(ঙ) সমাধান করো : $\frac{d^{4} y}{d x^{4}}=y$ ।
(চ) অনির্ণীত সহগ পদ্ধতির সাহায্যে $\frac{d^{2} y}{d x^{2}}+y=10 e^{2 x}$ সমীকরণটির বিশেষ সমাধান y_{p} নির্ণয় করো।
(ছ) ' a ' ও ' b '-কে $z=a x+b y+a b$ থেকে নিষ্কাশন করে আংশিক অবকল সমীকরণ গঠন করো।
(জ) মান নির্ণয় করো : $L^{-1}\left\{\frac{s}{s^{2}+16}\right\}$ ।
(ঝ) यमि $x \in[-\pi, \pi]-এ র$ জन्य $f(-x)=-f(x)$ হয়, তাহলে দেখাও যে Fourier সহ্গ $a_{n}=0, n=0,1,2, \ldots$
১২। (ক) $f_{n}(x)=\frac{n x}{n+x}, x \in[0, a], a>0$, দেখাও যে $\left\{f_{n}\right\}$ অনুক্রমটি [0, a] অন্তরালেে সমভাবে অভিসারী।
(খ) দেখাও যে $\left\{f_{n}\right\}$ অনুক্রমটি, যেখানে $f_{n}(x)=x^{n},[0, a]$ অন্তরালে সমভাবে অভিসারী $(n=1,2,3, \ldots)$ যখन $0<a<1$ এবং [0,1] অন্তরালে শধুমাত্র বিন্দু অনুযায়ী অভিসারী।

১৩। (ক) $\log \left(\frac{1}{1-x}\right)$-এর ঘাত শ্রেণি ব্যবহার করে, দেখাও যে $\int_{0}^{1} \log \left(\frac{1}{1-x}\right) d x=1$ ।
(খ) দেখাও যে, $x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4}}{\left(1+x^{4}\right)^{2}}+\ldots$ শ্রেণিটি $[0,1]$ অন্তরালে সমভাবে অভিসারী নয়।
8
>8। $f(x)=x^{2},-\pi<x<\pi$ এই Fourier শ্রেণিটির মান নির্ণয় করো। এর থেকে দেখাও যে $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \quad$ ৫+৩
১৫। (ক) সমাধান করো :

$$
\begin{aligned}
& \frac{d x}{d t}=-3 x+4 y \\
& \frac{d y}{d t}=-2 x+3 y
\end{aligned}
$$

(খ) ভেদপ্রাচল পদ্ধতির সাহায্যে সমাধান করো :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+a y=\sec a x \tag{8}
\end{equation*}
$$

১৬। (ক) যদি ঘাত শ্রেণি $\sum_{n=0}^{\infty} a_{n} x^{n}$-এর অভিসরণ ব্যাসার্ধ R হয়, তাহলে দেখাও বে ঘাত শ্রেণি $\sum_{n=0}^{\infty} \frac{a_{n} x^{n+1}}{n+1}$-এরও অভিসরণ ব্যাসার্ধ R হরে।
(খ) বিস্ক্তিত $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots,|x|<1$, থেকে $\tan ^{-1} x-এ র$ ঘাত শ্রেণি বিস্তৃতি নির্ণয় করো। তারপর দেখাও যে

$$
\begin{equation*}
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \tag{8}
\end{equation*}
$$

১१। (ক) यमि $L[f(t) ; s]=F(s)$ इয়, তবে প্রমাণ করো যে, $L\left[\frac{f(t)}{t} ; s\right]=\int_{s}^{\infty} F(s) d s$ ।
(খ) সমাধান কর্রা : $\left(D^{2}-3 D+2\right) y=x e^{3 x}$
১৮। (ক) আংশিক অবকল সমীকরণঢির সমাধান করো :

$$
\begin{equation*}
(y+z x) p-(x+y z) q=x^{2}-y^{2} \tag{৬}
\end{equation*}
$$

(খ) মান নির্ণয় করো : $L\left\{e^{a t}\right\}$
১৯। (ক) অनির্ণীত সহগ পদ্ধতি প্রয়োগ করে সমাধান করো : $\frac{d^{2} y}{d x^{2}}+4 y=\sin 2 x$
(খ) $\quad L^{-1}\left(\frac{1}{s\left(s^{2}+\omega^{2}\right)}\right)$-এর মান নির্ণয় করো।

২০। (ক) $z=f(x y)+g\left(\frac{x}{y}\right)$ থেকে অবাধ অপেক্ষক f ও g-কে অপসারণ করে একটি আংশিক অবকল সমীকরণ গঠন করো।
(খ) $\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\frac{\lambda}{x} y=0,(\lambda>0)$-এর আইগেন মানসমূহ ও আইঢগন অপেক্ষকগুলি निর্ণয় করো, যেখাতে $y(1)=0, y^{\prime}\left(e^{\pi}\right)=0$ ।

[English Version]

The figures in the margin indicate full marks.

Module-VIII

(Group - A)

[A Course of Calculus]

(Marks : 50)

Answer question number $\mathbf{1 1}$ and any five from the rest.
11. Answer any five questions:
(a) Let $f_{n}(x)=\frac{\sin n x}{n} ; n \in N ; x \in R$. Find the pointwise limit function (in any) of the sequence of functions $\left\{f_{n}\right\}_{n}$.
(b) Find the radius of convergence of the power series $x+\frac{x^{2}}{2^{2}}+\frac{2!}{3^{3}} x^{3}+\frac{3!}{4^{4}} x^{4}+\ldots$
(c) Show that $\sum_{n=1}^{\infty} \frac{\cos n x}{n^{4}}$ is uniformly convergent on R.
(d) Find $L\left\{\cos ^{2} a t\right\}$.
(e) Solve $\frac{d^{4} y}{d x^{4}}=y$.
(f) Find the particular integral y_{p}, by the method of undetermined coefficient :

$$
\frac{d^{2} y}{d x^{2}}+y=10 e^{2 x}
$$

(g) Form a partial differential equation by eliminating a and b from

$$
z=a x+b y+a b
$$

(h) Find the following inverse Laplace transformation: $L^{-1}\left\{\frac{s}{s^{2}+16}\right\}$.
(i) If $f(-x)=-f(x)$ for all x in $[-\pi, \pi]$, show that Fourier coefficient $a_{n}=0$, for all $n=0,1,2, \ldots$
12. (a) Let $f_{n}(x)=\frac{n x}{n+x}, x \in[0, a]$ where $a>0$. Show that the sequence $\left\{f_{n}\right\}$ is converges uniformly on $[0, a]$.
(b) Show that sequence $\left\{f_{n}\right\}$ where $f_{n}(x)=x^{n}$ is convergent uniformly on $[0, a], n=1,2,3, \ldots$, for $0<a<1$, only pointwise convergent on [0, 1].
13. (a) Using power series of $\log \left(\frac{1}{1-x}\right)$, show that $\int_{0}^{1} \log \left(\frac{1}{1-x}\right) d x=1$.
(b) Show that the series $x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4}}{\left(1+x^{4}\right)^{2}}+\ldots$ is not uniformly convergent on [0, 1].
14. Find the Fourier series of $f(x)=x^{2},-\pi<x<\pi$. Hence deduce from it $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \quad 5+3$
15. (a) Solve: $\frac{d x}{d t}=-3 x+4 y$

$$
\frac{d y}{d t}=-2 x+3 y
$$

(b) Solve by the method of variation of parameters

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+a y=\sec a x \tag{4}
\end{equation*}
$$

16. (a) If R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, then show that the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{a_{n} x^{n+1}}{n+1}$ is also R.
(b) From the expansion $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots,|x|<1$, obtain the power series expansion of $\tan ^{-1} x$ and hence show that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$
17. (a) If $L[f(t) ; s]=F(s)$, then prove that $L\left[\frac{f(t)}{t} ; s\right]=\int_{s}^{\infty} F(s) d s$.
(b) Solve $\left(D^{2}-3 D+2\right) y=x e^{3 x}$.
18. (a) Solve the partial differential equation

$$
\begin{equation*}
(y+z x) p-(x+y z) q=x^{2}-y^{2} \tag{6}
\end{equation*}
$$

(b) Find $L\left\{e^{a t}\right\}$.
19. (a) Solve by the method of undetermined coefficients: $\frac{d^{2} y}{d x^{2}}+4 y=\sin 2 x$
(b) Find $L^{-1}\left(\frac{1}{s\left(s^{2}+\omega^{2}\right)}\right)$.
20. (a) Form partial differential equation by eliminating the arbitrary function f and g from

$$
z=f(x y)+g\left(\frac{x}{y}\right)
$$

(b) Find the eigenvalues and eigenfunctions of

$$
\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\frac{\lambda}{x} y=0 ; y(1)=0, y^{\prime}\left(e^{\pi}\right)=0, \lambda>0
$$

Module-VIII

(বিভাগ - খ)

[Discrete Mathematics]

(Marks : 50)

১১ নং প্রশ্ন এবং অবশিষ্ট থেকে যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও।

১১. যে-কোনো পাচচটি প্রশ্নের উত্তর দাও:
(ক) $\phi(36)-এ র$ মান বের করো যেখানে ϕ হল Euler's Phi অপেক্ষক।
(খ) যদি a ও b-এর গ.সা.গু 1 হয়, তবে দেখাও যে a^{2} ও b^{2} এর গ.সা.গু = 1 ।
(গ) দেখাও তিনটি ক্রুমিক সংখ্যার গুণফল সর্বদা 6 দ্বারা বিভাজ্য।
(ঘ) $a_{n}=a_{n-1}+4 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=3$ দ্বারা সংজ্ঞয়িত $\left\{a_{n}\right\}$ অনুক্রুমের চারটি পদ লেখো।
(৬) $(\mathrm{A} 748)_{16}$ সংখ্যাটিকে দ্বি-নিধানী রাশিতে প্রকাশ করো।
(চ) x, y, z তিনটি পূর্ণসংখ্যা $x \mid y z$ এবং গ.সা.গ. $(x, y)=1$ হুলে দেখাও যে $x|z|$
(ছ) দেখাও যে, 70! + $1 \equiv 0(\bmod 71)$ ।
(জ) সত্য-সারণির সাহায্যে দেখাও যে, $x y^{\prime}+x y+x^{\prime} y=x+y ।$
(ঝ) পাটিগণিতের মৌলিক উপপাদ্যটি বিবৃত করো।
১২. (ক) $512 m+320 n=64$ কে সিদ্ধ করে এমন অখণ পূর্ণসংখ্যা m ও n निর্ণয় করো।
(খ) কোন্ ক্ষুদ্রতম ধনাত্যক পূর্ণসংখ্যাকে 2, 3, 5 ও 11 দ্বারা ভাগ করলেে যথাক্রন্ম $1,2,3,4$ ভাগশেষ থাকে? 8
১৩. (ক) গাপিতিক আরোহী পদ্ধতির (mathematical induction) সাহায্যে প্রমাণ করো যে, যে-কোনো ধনাত্মক পূর্ণসংখ্যা n - এর জন্য $2^{2 n}-1$ সংখ্যাটি ' 3 ' দ্বারা বিভাজ্য।
(খ) মৌলিক সংখ্যার সংজ্ঞা দাও। 353 সংখ্যাটি মোলিক কি না যুক্তি দিয়ে দেখাও। ১+৩
১8. (ক) প্রদত্ত ISBN-গুলি সঠিক কি না নির্ণয় করো :
(i) $0-27-04003-5$
(ii) $81-203-1147-7$ ।
(খ) সাতটি দল অংশগ্রহণ কররে এমন একটি Round Robin প্রতিয়োগিতার সূচি গঠন করো। (পূর্ণলংখ্যার Congruence ব্যবহার করো)।
১৫. (ক) $1!+2!+3!+4!+5!+\ldots+100!$ কে 15 দ্বারা ভাগ করলেে কত ভাগশেষ থাকবে? 8
(খ) সমাধান করো : $2 x+3 y=50, x, y \in N$ ।
১৬. (ক) 15 সংখ্যা বিশিষ্ট একটি VISA CREDIT CARD-এর নম্বর হল 456398103862540, চেক ডিজিট নির্ণয় করো। 8
(খ) সমাধান করো : $6 x \equiv 3(\bmod 9) ।$
১৭. (ক) একটি বুলীয় অ্যালজেব্রা $(B,+, \cdot$,$) এর জন্য প্রমাণ করো ঃ a b^{\prime}+a^{\prime} b=0$ यमি $a=b$ হয় এবং যদি $a=b$ হয় তাহুেলে $a b^{\prime}+a^{\prime} b=0$ रढে।

8
(খ) সত্যসারণী ব্যবহার করে $(x+y)(y+z)\left(x^{\prime}+y^{\prime}+Z\right)$ বুলীয় অপেক্ষকটির DNF নির্ণয় করো। 8
১৮. (ক) কারক অপেক্ষক (generating function) ব্যবহার করে পূর্ণসংখ্যার সমাধান নির্ণয় করো : $a+b+c=10$ যেখানে $0 \leq a \leq 2,2 \leq b \leq 4$ এবং $c=4$ বা 5 হয়।
(খ) যে-কোনো পূর্ণসংখ্যা n-এর জন্য প্রমাণ করো, $\frac{n^{7}}{7}+\frac{n^{3}}{3}+\frac{11 n}{21}$ একটি পূর্ণসংখ্যা।
১৯. (ক) $(x+y+x y) \cdot(x+y)$ বুলীয় অপেক্ষকটির সুইচ-বর্তনী অঙ্কন করো এবং তার একটি সরল আকারের বর্তনী-আনয়ন করো।
(খ) লজিক গেট কাকে বলে ? 3 প্রকার লজিক গেটের ব্যবহার আলোচনা করো। 8

[English Version]

The figures in the margin indicate full marks.
Module-VIII
(Group - B)

[Discrete Mathematics]

(Marks : 50)

Answer question number 11 and any five from the rest.

11. Answer any five questions :
(a) Find $\phi(36)$ where ϕ is the Euler's Phi function.
(b) If $\operatorname{gcd}(a, b)=1$, then prove that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.
(c) Prove that the product of any three consecutive integers is divisible by 6 .
(d) Find four terms of the sequence $\left\{a_{n}\right\}, n \geq 0$, defined by $a_{n}=a_{n-1}+4 a_{n-2}, n \geq 2$ with $a_{0}=1$, $a_{1}=3$.
(e) Convert (A748) ${ }_{16}$ to binary equivalent.
(f) If x, y, z are integers, $x \mid y z$ and h.c.f. $(x, y)=1$, then prove that $x \mid z$.
(g) Show that $70!+1 \equiv 0(\bmod 71)$.
(h) Using truth-table, show that $x y^{\prime}+x y+x^{\prime} y=x+y$.
(i) State the 'Fundamental Theorem of Arithmetic'.
12. (a) Find integers m and n, such that $512 m+320 n=64$.
(b) Find smallest positive integer which leaves the remainder 1, 2, 3, 4 when divided by the prime numbers $2,3,5,11$ respectively.
13. (a) Prove that $2^{2 n}-1$ is divisible by 3 by the principle of mathematical induction for every positive integer n.
(b) Define prime number. Is 353 a prime number? Justify your answer. $1+3$
14. (a) Determine whether the following ISBNs are valid:
(i) $0-27-04003-5$
(ii) $81-203-1147-7$.
(b) Construct a Round robin Tournament schedule for 7 teams using congruence of integers.
15. (a) What is the remainder when $1!+2!+3!+4!+5!+\ldots+100$! is divided by 15 ?
(b) Solve $2 x+3 y=50, x, y \in N$.
16. (a) The first 15 digits of a credit card visa is 456398103862540 . Find the check digit for this card. 4
(b) Solve : $6 x \equiv 3(\bmod 9)$.
17. (a) In a Boolean algebra $\left(B,+, \cdot,{ }^{\prime}\right)$ prove that $a b^{\prime}+a^{\prime} b=0$ if and only if $a=b$.
(b) Find the DNF of the Boolean expression $(x+y)(y+z)\left(x^{\prime}+y^{\prime}+Z\right)$ by truth table method. 4
18. (a) Using generating function, find all integral solutions for $a+b+c=10$, where $0 \leq a \leq 2,2 \leq b \leq 4, c=4$ or 5 .
(b) Show that for any integer $n, \frac{n^{7}}{7}+\frac{n^{3}}{3}+\frac{11 n}{21}$ is an integer.
19. (a) Draw a switching circuit for the Boolean expression $(x+y+x y) \cdot(x+y)$. Obtain a Simpler equivalent circuit.
(b) What is a logic gate? Give 3 basic types of gates used in combinational circuits.
