## 2021

## ECONOMICS - HONOURS

## Seventh Paper

## (Group - A)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

## Section - A <br> (Marks : 20)

1. Answer any five questions:
(a) Define Type-I and Type-II error. Can you reduce both the errors simultaneously?
(b) Are the following linear regression models? Give reasons.
(i) $Y_{i}=\alpha+\sqrt{\beta} X_{i}+u_{i}$
(ii) $Y_{i}=\alpha X_{i}^{\beta} e^{u_{i}}$
(c) Show that if a regression line is fitted through origin, the sum of the residuals may not equal to zero.
(d) A random sample $x_{1}, x_{2}, \ldots \ldots, x_{n}$ is drawn from an infinite population with variance $\sigma^{2}$ and $\bar{x}$ is the sample mean. Derive an unbiased estimator of $\sigma^{2}$.
(e) A sample of size 25 drawn from a normal population with variance 81, produced a mean of 81.2. Find a 0.95 level of confidence interval for the population mean.
(Given that $\frac{1}{\sqrt{2} \pi} \int_{1.96}^{\infty} e^{-z^{2} / 2} d z=0.025$ ).
(f) Show that the square of Student's $t$-statistic with $n$ degrees of freedom has an F-distribution with $(1, n)$ degrees of freedom.
(g) Discuss the method of least squares for computing trend in time series analysis.
(h) $Y_{i}=\hat{\alpha}+\hat{\beta} X_{i}+u_{i}$ where $n=10$,
$\sum X_{i}=70, \sum Y_{i}=80, \sum X_{i}^{2}=600, \sum Y_{i}^{2}=734, \sum X_{i} Y_{i}=480$
Obtain the estimated value of $\alpha$ and $\beta$.

## Section - B

(Marks : 30)
Answer any five questions.
2. Let $x$ and $y$ be two continuous random variables having joint probability density function :
$f(x, y)= \begin{cases}1-\frac{x}{3}-\frac{y}{3}, & 0 \leq x<2,0 \leq y \leq 1 \\ 0 \quad, & \text { otherwise. }\end{cases}$
Obtain the marginal densities of $x$ and $y$.
3. (a) What do you mean by a Minimum Variance Unbiased Estimator (MVUE)?
(b) Let $T_{1}$ and $T_{2}$ be statistics with expectations $E\left(T_{1}\right)=2 \theta_{1}+3 \theta_{2}$ and $E\left(T_{2}\right)=\theta_{1}+\theta_{2}$. Find unbiased estimators of $\theta_{1}$ and $\theta_{2}$.
4. Find the standard error of sample proportion in both SRSWR and SRSWOR.
5. (a) A simple random sample of size 5 is drawn without replacement from a finite population consisting of 41 units. If the population standard deviation is 6.25 , what is the standard error of sample mean?
(b) If $X_{1}, X_{2}, \ldots \ldots \ldots, X_{n}$, be ' $n$ ' normally distributed variables having identical variances $\sigma^{2}$ with mean 0 , what form will the distribution of $X_{1}^{2}+X_{2}^{2}+\ldots \ldots \ldots+X_{n}^{2} / \sigma^{2}$ take? Justify your answer.
6. Show that the least squares estimator of $\beta$ in the model $Y_{i}=\alpha+\beta X_{i}+u_{i}$ is linear and unbiased. Derive the variance of the estimator of $\beta$.
$3+3$
7. Find the maximum likelihood estimator of the mean of a Poisson population from a random sample of size $n$ and show that it is unbiased.
$4+2$
8. What assumptions are made regarding the error term in a Classical Linear Regression Model? What happens to the OLS estimators if homoscedasticity assumption is violated?
9. Fit a straight line trend to the following data and obtain the trend value for 2004 :
$4+2$

| Year | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average <br> Monthly Profit <br> (Million ₹) | 6.3 | 7.4 | 9.3 | 7.4 | 8.3 | 10.6 | 9.0 | 8.7 | 7.9 |

